In this work, we show the possibility that jet production by magnetization predominates over other mechanisms of jet production in radio sources with low power output. We obtain estimates of accretion induced magnetic field and jet-driving magnetic field of compact steep spectrum sources in our sample using analytical methods.A possible implication of the results obtained through simple linear regression analyses of the data estimated for the two aforementioned fields is that jet production by magnetization predominates in the CSS radio sources with lower power output; while in those with higher power output, the converse may be the case – some other processes,such as; hydrodynamic, thermal, and radiation pressures may predominate over jet magnetization.
Published in | American Journal of Astronomy and Astrophysics (Volume 3, Issue 1) |
DOI | 10.11648/j.ajaa.20150301.11 |
Page(s) | 1-5 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Jet, Accretion, Magnetization, Steep Spectrum, Radio Sources
[1] | C. E. Akujor, and S. T. Garrington, “Compactsteep-spectrum sources – polarization observations at1.6, 8.4 and 15GHz,” Astron and Astrophy. Suppl. Ser.,vol. 122, pp. 235-255, 1995 |
[2] | C. Fanti, R. Fanti, D. C. Dallacasa, R. T. Schilizzi, R. E.Spencer, and C. Stanghellini, “Are compactsteep-spectrum sources young?”Astron. and Astrophy., vol. 302, pp. 317-326, 1995 |
[3] | C. P. O’Dea, “The compact steep-spectrum sources andGigahertz peaked-spectrum radio sources”, Pub. Astron.Soc. Ppacific,vol. 110, pp. 493-532, 1998 |
[4] | C. A. Jackson, “Radio source evolution and unifiedschemes,” Publ. Astron. Soc. Aust., vol. 16, pp.124-129, 1999 |
[5] | J. Machalski, M. Jamrozy, and D. J. Saikia, “A multifrequency study of giant radio sources III. Dynamicalage vs. spectral age of the lobes of selected sources”,Mont. Not. Roy. Ast. Soc., vol. 395, pp. 812-824, 2009 |
[6] | D. J. Saikia, S. Jeyakumar, P. J. Wiita, H. S. Sanghera,and R. E.Spencer, “Compact steep-spectrum radiosources and unification schemes,” Mon. Not. Roy. Ast.Soc., vol. 276, pp. 1215-1223, 1995 |
[7] | C. J. Stanghellini, D. Dallacasa, C. P. O'Dea, S. A.Baum, R. Fanti, C. Fanti, “VLBA observations ofGHz-peaked-spectrum radio sources at 15GHz,” Astron. and Astrophy., vol. 377, pp. 377-388, 2001 |
[8] | J. A. Peacock, andJ. V. Wall, “Bright extragalacticradio sources at 2.7GHz-II,” Mont. Not. Roy. Ast. Soc.,vol. 198, pp. 843-860, 1982 |
[9] | M. Murgia, R. Fanti, L. Gregorini, U. Klein, K. H.Mark, and M. Vigotti, “Synchrotron spectra and ages ofcompact steep spectrum radio sources,” Astron. andAstrophy., vol. 345, pp. 769-777, 1999 |
[10] | S. Koide, K. Shibata, and T. Kudoh, “Relativistic jetformation from black hole magnetized accretion disks,”,The Astrophy. Journ., vol. 522, pp.727-752, 1999 |
[11] | M. Mościbrodzka, H. Falcke, H. Shiokawa, and C. F. Gammie, “Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: Application to Sagittarius A,”Astron. and Astrophy. vol. 570, A7, 2014 |
[12] | D. Pérez, G. E. Romero, and S. E. P. Bergliaffa, “Accretion disks around black holes in modified strong gravity,”Astron. and Astrophy. vol. 551, A4, 2013 |
[13] | A. Bongiorno, A. Merloni, M. Brusa, B. Magnelli, M. Salvato, M. Mignoli, G. Zamorani, F. Fiore, D. Rosario, V. Mainieri, H. Hao, A. Comastri, C. Vignali, I. Balestra, S. Bardelli, S. Berta, F. Civano, P. Kampczyk, E. Le Floc'h, E. Lusso, D. Lutz, L. Pozzetti, F. Pozzi, L. Riguccini, F. Shankar, andJ. Silverman, “Accreting supermassive black holes in the COSMOS field and the connection to their host galaxies,” Mon. Not. Roy Ast. Soc., vol. 427, pp. 3103-3133, 2012 |
[14] | I. Robson, Active Galactic Nuclei, England: John Wileyand Sons, 1996, pp. 269-307 |
[15] | R. D. Blandford, and D. G. Payne, “Hydromagneticflows from accretion discs and the production of radiojets,” Mont. Not. Roy. Ast. Soc., vol. 199, pp. 883-903,1982 |
[16] | G. V. Ustyugova, A. V. Koldoba, M. M. Romanova, V.M. Chechetkin, and R. V. E Lovelace, “Magnetohydrodynamic simulations of outflows from accretiondisks,” Astrophys. Journal, vol. 439, pp. L39-L42, 1995 |
[17] | J. E. Pringle, “Accretion disks in astrophysics,” Ann.Rev. Astron. astrophy., vol. 19, pp. 137-162, 1981 |
[18] | B. Paczynsky, P. J. Wiita, “Thick accretion disks andsupercritical luminosity,” Astro. Astrophy., vol. 88, pp.23-31, 1980 |
[19] | J. C. Ezeugo,“Compact steep-spectrum radio sources and ambient medium density” unpublished. |
[20] | I. Owsianik, and J. E. Conway, “First detection ofhotspot advance in a compact symmetric object” Astron. and Astrophy., vol. 337, pp. 69-79, 1998 |
[21] | J. C. Ezeugo, and A. A. Ubachukwu, “The spectralturnover-linear size relation and the dynamical evolution of compact steep spectrum sources”, Mon. Not.Roy Ast. Soc, vol. 408, pp.2256-2260,2010 |
APA Style
Ezeugo Jeremiah Chukwuemerie. (2015). On Compact Steep Spectrum Sources and Jet Production. American Journal of Astronomy and Astrophysics, 3(1), 1-5. https://doi.org/10.11648/j.ajaa.20150301.11
ACS Style
Ezeugo Jeremiah Chukwuemerie. On Compact Steep Spectrum Sources and Jet Production. Am. J. Astron. Astrophys. 2015, 3(1), 1-5. doi: 10.11648/j.ajaa.20150301.11
AMA Style
Ezeugo Jeremiah Chukwuemerie. On Compact Steep Spectrum Sources and Jet Production. Am J Astron Astrophys. 2015;3(1):1-5. doi: 10.11648/j.ajaa.20150301.11
@article{10.11648/j.ajaa.20150301.11, author = {Ezeugo Jeremiah Chukwuemerie}, title = {On Compact Steep Spectrum Sources and Jet Production}, journal = {American Journal of Astronomy and Astrophysics}, volume = {3}, number = {1}, pages = {1-5}, doi = {10.11648/j.ajaa.20150301.11}, url = {https://doi.org/10.11648/j.ajaa.20150301.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaa.20150301.11}, abstract = {In this work, we show the possibility that jet production by magnetization predominates over other mechanisms of jet production in radio sources with low power output. We obtain estimates of accretion induced magnetic field and jet-driving magnetic field of compact steep spectrum sources in our sample using analytical methods.A possible implication of the results obtained through simple linear regression analyses of the data estimated for the two aforementioned fields is that jet production by magnetization predominates in the CSS radio sources with lower power output; while in those with higher power output, the converse may be the case – some other processes,such as; hydrodynamic, thermal, and radiation pressures may predominate over jet magnetization.}, year = {2015} }
TY - JOUR T1 - On Compact Steep Spectrum Sources and Jet Production AU - Ezeugo Jeremiah Chukwuemerie Y1 - 2015/02/16 PY - 2015 N1 - https://doi.org/10.11648/j.ajaa.20150301.11 DO - 10.11648/j.ajaa.20150301.11 T2 - American Journal of Astronomy and Astrophysics JF - American Journal of Astronomy and Astrophysics JO - American Journal of Astronomy and Astrophysics SP - 1 EP - 5 PB - Science Publishing Group SN - 2376-4686 UR - https://doi.org/10.11648/j.ajaa.20150301.11 AB - In this work, we show the possibility that jet production by magnetization predominates over other mechanisms of jet production in radio sources with low power output. We obtain estimates of accretion induced magnetic field and jet-driving magnetic field of compact steep spectrum sources in our sample using analytical methods.A possible implication of the results obtained through simple linear regression analyses of the data estimated for the two aforementioned fields is that jet production by magnetization predominates in the CSS radio sources with lower power output; while in those with higher power output, the converse may be the case – some other processes,such as; hydrodynamic, thermal, and radiation pressures may predominate over jet magnetization. VL - 3 IS - 1 ER -