| Peer-Reviewed

An Algebraic Operator Approach to Aharonov-Bohm Effect

Received: 31 January 2015     Accepted: 13 February 2015     Published: 26 February 2015
Views:       Downloads:
Abstract

A new approach based on algebraic quantum operator, is pursued in order to investigate the Aharonov-Bohm effect. Introducing a SU(2) dynamical invariance algebra, the discrete spectrum and the energy level of the quantum Aharonov-Bohm effect is obtained. This alternative method will help undergraduate students to broader their knowledge about this interesting quantum phenomenon.

Published in American Journal of Modern Physics (Volume 4, Issue 2)
DOI 10.11648/j.ajmp.20150402.12
Page(s) 44-49
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Quantum Physics, Schrödinger Equation, Spherical Coordinates, Hyperbolic Coordinates, Aharonov-Bohm Effect, Operator

References
[1] S. Gasiorowicz: Quantum physics, John Wiley (1974)
[2] Y. Aharonov, D. Bohm: Physical Review 115: 485–91 (1959)
[3] L. Page: Physical Review 36, 444 (1930)
[4] A. Batelaan, A. Tonomura: Physics Today 62 (9): 38-43 (2009)
[5] E. Sjöqvist: Physical Review Letters 89 (21): 210401 (2002)
[6] W. Ehrenberg, R.E. Siday: Proceedings of the Physical Society. Series B 62: 8–21 (1949)
[7] F.D. Peat: Infinite Potential: The Life and Times of David Bohm, Addison-Wesley. ISBN 0-201-40635-7 (1997)
[8] Y. Aharonov, D. Bohm: Physical Review 123: 1511–1524 (1961)
[9] M. Peshkin, A. Tonomura: The Aharonov–Bohm effect. Springer-Verlag. ISBN 3-540-51567-4 (1989)
[10] L. Vaidman: Physical Review A 86 (4): 040101 (2012)
[11] R. Feynman: The Feynman Lectures on Physics 2, pp. 15–5 (1964)
[12] V.Y. Chernyak, N.A. Sinitsyn: Journal of Chemical Physics 131(18): 181101 (2009)
[13] H.D. Doebner, E. Papp: Physics Letters A 144, 8–9, Pages 423–426 (1990)
[14] Gh. E. Draganascu, C. Campigotto, M. Kibler: Physics Letters A 170, 6, 339–343 (1992)
[15] M. Kibler, C. Campigotto: Physics Letters A 181, 1, 1–6 (1993)
[16] M. R. Brown, B. J. Hiley: arXiv:quant-ph/0005026v5
[17] S. Sakoda, M. Omote: Advances in Imaging and Electron Physics 1, 110, 101–171 (1999)
[18] M. Aktaş: International Journal of Theoretical Physics 48, 7, 2145–2163 (2009)
[19] M. Aktaş: Journal of Mathematical Chemistry 49, 9, 1831–1842 (2011)
[20] E. Jung, M-R. Hwang, C-S. Park, D. Park: Journal of Physics A: Mathematical and Theoretical 45, 5, 055301 (2012)
Cite This Article
  • APA Style

    Farrin Payandeh. (2015). An Algebraic Operator Approach to Aharonov-Bohm Effect. American Journal of Modern Physics, 4(2), 44-49. https://doi.org/10.11648/j.ajmp.20150402.12

    Copy | Download

    ACS Style

    Farrin Payandeh. An Algebraic Operator Approach to Aharonov-Bohm Effect. Am. J. Mod. Phys. 2015, 4(2), 44-49. doi: 10.11648/j.ajmp.20150402.12

    Copy | Download

    AMA Style

    Farrin Payandeh. An Algebraic Operator Approach to Aharonov-Bohm Effect. Am J Mod Phys. 2015;4(2):44-49. doi: 10.11648/j.ajmp.20150402.12

    Copy | Download

  • @article{10.11648/j.ajmp.20150402.12,
      author = {Farrin Payandeh},
      title = {An Algebraic Operator Approach to Aharonov-Bohm Effect},
      journal = {American Journal of Modern Physics},
      volume = {4},
      number = {2},
      pages = {44-49},
      doi = {10.11648/j.ajmp.20150402.12},
      url = {https://doi.org/10.11648/j.ajmp.20150402.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20150402.12},
      abstract = {A new approach based on algebraic quantum operator, is pursued in order to investigate the Aharonov-Bohm effect. Introducing a SU(2) dynamical invariance algebra, the discrete spectrum and the energy level of the quantum Aharonov-Bohm effect is obtained. This alternative method will help undergraduate students to broader their knowledge about this interesting quantum phenomenon.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - An Algebraic Operator Approach to Aharonov-Bohm Effect
    AU  - Farrin Payandeh
    Y1  - 2015/02/26
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ajmp.20150402.12
    DO  - 10.11648/j.ajmp.20150402.12
    T2  - American Journal of Modern Physics
    JF  - American Journal of Modern Physics
    JO  - American Journal of Modern Physics
    SP  - 44
    EP  - 49
    PB  - Science Publishing Group
    SN  - 2326-8891
    UR  - https://doi.org/10.11648/j.ajmp.20150402.12
    AB  - A new approach based on algebraic quantum operator, is pursued in order to investigate the Aharonov-Bohm effect. Introducing a SU(2) dynamical invariance algebra, the discrete spectrum and the energy level of the quantum Aharonov-Bohm effect is obtained. This alternative method will help undergraduate students to broader their knowledge about this interesting quantum phenomenon.
    VL  - 4
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, Payame Noor University (PNU), P.O. BOX, 19395-3697 Tehran, Iran

  • Sections