In this paper, we investigate the time evolution of the quantum mechanical state of a polaron using the Pekar type variational method on the electric-LO-phonon and the magnetic-LO-phonon strong coupling in a quantum dot. We obtain the Eigen energies and the Eigen functions of the ground state and the first excited state, respectively. In a quantum dot, this system can be viewed as a two level quantum system qubit. The superposition state polaron density oscillates in the quantum dot with a period τ_0when the polaron is in the superposition of the ground and the first-excited states. The spontaneous emission of phonons causes the decoherence of the qubit. We show that the density matrix of the qubit decays with the time while the coherence term of the density matrix element 〖 p〗_01 (〖 or p〗_10) decays with the time as well for different coupling strengths, confinement lengths, and dispersion coefficients. The Shannon entropy is evaluated in order to investigate the decoherence of the system.
Published in | American Journal of Modern Physics (Volume 4, Issue 3) |
DOI | 10.11648/j.ajmp.20150403.16 |
Page(s) | 138-148 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Polaron, Quantum Dot, Qubit, Electric Field, Magnetic Field, Cyclotron Frequency, Shannon Entropy, Decoherence
[1] | Li W. P., Yin J. W., Yu Y. F., Wang Z.W. and Xiao J.L., J. Low Temp Phys. 160, 112(2010). |
[2] | Yu Y. F., Li W. P., Yin J. W. and Xiao J.L., J. Low Temp. Phys. 50, 3322(2011) |
[3] | J.W. Yin, J.L. Xiao, Y.F. Yu, Z.W. Wang, Chin. Phys. B 18, 446(2009). |
[4] | Jia-kui S., Hong-Juan L., Jing-Lin X., Physica B 404,1961(2009). |
[5] | Nielsen M.A., Chang I. L., Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000). |
[6] | I. D’Amico, Microelectron. J. 37, 1440 (2006) |
[7] | Bennett C.H., DiVincenzo D.P., Nature 404, 247 (2000) |
[8] | Hawrylak P., Korkusinski M., Solid State Commun. 136, 508 (2005) |
[9] | Sarma S.D., Sousa R.D., Hu X.D., Koiller B., Solid State Commun. 133, 737 (2005) |
[10] | Yi-Fu Yu, Wei-Ping Li, Ji-Wen Yin, Jing-Lin Xiao, Int. J. Theor. Phys 50, 3322(2011). |
[11] | Barnes, J.P., Warren, W.S., Phys. Rev. A 60, 4363 (1999) |
[12] | Tolkunov, D., Privman, V., Phys. Rev. A 69, 062309 (2004) |
[13] | Grodecka, A., Machnikowski, P., Phys. Rev. B 73, 125306 (2006) |
[14] | Lovric, M., Krojanski, H.G., Suter, D., Phys. Rev. A 75, 042305 (2007) |
[15] | Shannon CE. Bell Syst. Tech. J., 27(1), 379(1948) |
[16] | Sagar RP, Hô M, Mex J. , Chem. Soc. 52(1),60-66(2008). |
[17] | Guo-Hua Sun, Shi-Hai Dong. Phys. Scr. 87(4), 045003(2013) |
[18] | L. C. Fai, M. Tchoffo, J. T. Diffo and G. C. Fouokeng, Physical Review & Research International 4(2): 267(2014) |
[19] | Jing-Lin Xiao, J. Low Temp Phys. 172(1-2), 122 (2013). |
[20] | Li S.S., Xia J.B., Yang F.H., Niu Z.C., Feng S.L., Zheng H.Z., J. Appl. Phys. 90, 6151 (2001) |
[21] | Li S.S.,Gui- Lu L., Bai F.S., Feng S.L., Zheng H.Z., Proc. Natl. Acad. Sci. USA 98, 11847 (2001) |
[22] | Wang Z.W., Xiao J.L., Acta Phys. Sin. 56, 678 (2007) |
[23] | L.D Landau, E.M. Lifshitz, Quantum Mechanics (Non relativistic Theory) (Pergamon, London, 1987) |
[24] | Yong Sun, Zhao-Hua Ding and Jing-Lin Xiao, J. Low temp. Phys. 177, 151(2014) |
[25] | Chen Shihua and Xiao Jing-Lin, Chinese Journal of Electronics 18(2), 2009 |
[26] | A. J. Fotue, S. C. Kenfack, H. Fotsin, M. Tiotsop, L. C. Fai and M.P. Tabue Djemmo, Physical Science international journal 6(1), 15(2015). |
[27] | Y. Ji-Wen , X. Jing-Lin, Y. Yi-Fu and W. Zi-Wu, Chinese Physics B 18(2), 446(2009) |
[28] | B.S. Kandemir, A. Cetin, J. Phys. Condens. Matter 17(4), 667(2003) |
[29] | V. L. Nguyen, M. T. Nguyen and T. D. Nguyen, Physica B 292(1), 159(2000). |
[30] | C. S. Wang and J. L. Xiao, Mod. Phys. Lett. B 26, 1150003 (2012) [10 pages] |
[31] | Y. Lepine and G. Bruneau, J. Phys. Condens. Matter 10, 1495(1998). |
[32] | B. S. Kandemir and T. Altanhan, Eur. Phys. J. B. 33, 227(2003). |
APA Style
Alain Jerve Fotue, Sadem Christian Kenfack, Nsangou Issofa, Maurice Tiotsop, Michel Pascal Tabue Djemmo, et al. (2015). Decoherence of Polaron in Asymmetric Quantum Dot Qubit Under an Electromagnetic Field. American Journal of Modern Physics, 4(3), 138-148. https://doi.org/10.11648/j.ajmp.20150403.16
ACS Style
Alain Jerve Fotue; Sadem Christian Kenfack; Nsangou Issofa; Maurice Tiotsop; Michel Pascal Tabue Djemmo, et al. Decoherence of Polaron in Asymmetric Quantum Dot Qubit Under an Electromagnetic Field. Am. J. Mod. Phys. 2015, 4(3), 138-148. doi: 10.11648/j.ajmp.20150403.16
AMA Style
Alain Jerve Fotue, Sadem Christian Kenfack, Nsangou Issofa, Maurice Tiotsop, Michel Pascal Tabue Djemmo, et al. Decoherence of Polaron in Asymmetric Quantum Dot Qubit Under an Electromagnetic Field. Am J Mod Phys. 2015;4(3):138-148. doi: 10.11648/j.ajmp.20150403.16
@article{10.11648/j.ajmp.20150403.16, author = {Alain Jerve Fotue and Sadem Christian Kenfack and Nsangou Issofa and Maurice Tiotsop and Michel Pascal Tabue Djemmo and Amos Veyongni Wirngo and Hilaire Fotsin and Lukong Cornelius Fai}, title = {Decoherence of Polaron in Asymmetric Quantum Dot Qubit Under an Electromagnetic Field}, journal = {American Journal of Modern Physics}, volume = {4}, number = {3}, pages = {138-148}, doi = {10.11648/j.ajmp.20150403.16}, url = {https://doi.org/10.11648/j.ajmp.20150403.16}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20150403.16}, abstract = {In this paper, we investigate the time evolution of the quantum mechanical state of a polaron using the Pekar type variational method on the electric-LO-phonon and the magnetic-LO-phonon strong coupling in a quantum dot. We obtain the Eigen energies and the Eigen functions of the ground state and the first excited state, respectively. In a quantum dot, this system can be viewed as a two level quantum system qubit. The superposition state polaron density oscillates in the quantum dot with a period τ_0when the polaron is in the superposition of the ground and the first-excited states. The spontaneous emission of phonons causes the decoherence of the qubit. We show that the density matrix of the qubit decays with the time while the coherence term of the density matrix element 〖 p〗_01 (〖 or p〗_10) decays with the time as well for different coupling strengths, confinement lengths, and dispersion coefficients. The Shannon entropy is evaluated in order to investigate the decoherence of the system.}, year = {2015} }
TY - JOUR T1 - Decoherence of Polaron in Asymmetric Quantum Dot Qubit Under an Electromagnetic Field AU - Alain Jerve Fotue AU - Sadem Christian Kenfack AU - Nsangou Issofa AU - Maurice Tiotsop AU - Michel Pascal Tabue Djemmo AU - Amos Veyongni Wirngo AU - Hilaire Fotsin AU - Lukong Cornelius Fai Y1 - 2015/06/03 PY - 2015 N1 - https://doi.org/10.11648/j.ajmp.20150403.16 DO - 10.11648/j.ajmp.20150403.16 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 138 EP - 148 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20150403.16 AB - In this paper, we investigate the time evolution of the quantum mechanical state of a polaron using the Pekar type variational method on the electric-LO-phonon and the magnetic-LO-phonon strong coupling in a quantum dot. We obtain the Eigen energies and the Eigen functions of the ground state and the first excited state, respectively. In a quantum dot, this system can be viewed as a two level quantum system qubit. The superposition state polaron density oscillates in the quantum dot with a period τ_0when the polaron is in the superposition of the ground and the first-excited states. The spontaneous emission of phonons causes the decoherence of the qubit. We show that the density matrix of the qubit decays with the time while the coherence term of the density matrix element 〖 p〗_01 (〖 or p〗_10) decays with the time as well for different coupling strengths, confinement lengths, and dispersion coefficients. The Shannon entropy is evaluated in order to investigate the decoherence of the system. VL - 4 IS - 3 ER -