| Peer-Reviewed

Hypermathematics, Hv-Structures, Hypernumbers, Hypermatrices and Lie-Santilli Addmissibility

Received: 2 June 2015     Accepted: 2 June 2015     Published: 11 August 2015
Views:       Downloads:
Abstract

We present the largest class of hyperstructures called Hv-structures. In Hv-groups and Hv-rings, the fundamental relations are defined and they connect the algebraic hyperstructure theory with the classical one. Using the fundamental relations, the Hv-fields are defined and their elements are called hypernumbers or Hv-numbers. Hv-matrices are defined to be matrices with entries from an Hv-field. We present the related theory and results on hypermatrices and on the Lie-Santilli admissibility

Published in American Journal of Modern Physics (Volume 4, Issue 5-1)

This article belongs to the Special Issue Issue I: Foundations of Hadronic Mathematics

DOI 10.11648/j.ajmp.s.2015040501.15
Page(s) 38-46
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Representations, Hope, Hyperstructures, Hv-Structures

References
[1] R. Anderson, A.A. Bhalekar, B. Davvaz, P.S. Muktibodh, V.M. Tangde, A.S. Muktibodh, T.Vougiouklis, An introduction to Santilli’s isodual theory of antimatter and the open problem of detecting antimatter asteroids, NUMTA Bulletin, 6, 2012-13, 1-33.
[2] R. Bayon, N. Lygeros, Les hypergroupes abéliens d’ ordre 4, Proceedings: Structure Elements of Hyper-structures, Spanidis Press, 2005, 35-39.
[3] R. Bayon, N. Lygeros, Advanced results in enumeration of hyperstructures, J. Algebra, 320, 2008, 821-835.
[4] P. Corsini, V. Leoreanu, Applications of Hypergroup Theory, Kluwer Academic Publ., 2003.
[5] P. Corsini, T. Vougiouklis, From groupoids to groups through hypergroups, Rendiconti Mat. VII, 9, 1989, 173-181.
[6] B. Davvaz, On Hv-subgroups and anti fuzzy Hv-subgroups, Korean J. Comp. Appl. Math. V.5, N.1, 1998, 181-190.
[7] B. Davvaz, On Hv-rings and Fuzzy Hv-ideals, J.Fuzzy Math.V.6,N.1, 1998, 33-42.
[8] B. Davvaz, Fuzzy Hv-submodules, Fuzzy sets and Systems, 117, 2001, 477-484.
[9] B. Davvaz, A brief survey of the theory of Hv-structures, 8th AHA, Greece, Spanidis, 2003, 39-70.
[10] B. Davvaz, Polygroup Theory and Related Systems, World Scientific, 2013.
[11] B. Davvaz, W. Dudek, T. Vougiouklis, A generalization of n-ary algebraic systems, Communications in Algebra, 37, 2009, 1248-1263.
[12] B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, Int. Academic Press, USA, 2007.
[13] B. Davvaz, R.M. Santilli, T. Vougiouklis, Studies of multi-valued hyper-structures for the characterization of matter-antimatter systems and their extension, Algebras, Groups and Geometries 28(1), 2011, 105-116.
[14] B. Davvaz, R.M. Santilli, T. Vougiouklis, Multi-valued Hypermathematics for characterization of matter and antimatter systems, J. Comp. Methods in Sciences and Engineering 13, 2013, 37–50.
[15] B. Davvaz, R.M. Santilli, T. Vougiouklis, Mathematical prediction of Ying’s twin universes, American J. of Modern Physics, 4(3), 2015, 5-9.
[16] B. Davvaz, S. Vougioukli, T. Vougiouklis, On the multiplicative Hv-rings derived from helix hyperoperations, Util. Math., 84, 2011, 53-63.
[17] B. Davvaz, T. Vougiouklis, N-ary hypergroups, Iranian J. of Science & Technology, Transaction A, V.30, N.A2, 2006, 165-174.
[18] A. Dramalidis, Geometrical Hv-structures, Proceedings: Structure Elements of Hyper-structures, Spanidis Press, 2005, 41-51.
[19] S. Hoskova, J. Chvalina, Abelizations of proximal Hv-rings using graphs of good homomorphisms and diagonals of direct squares of hyperstructures, 8th AHA Congress, Spanidis Press, 2003, 147-158.
[20] A. Iranmanesh, M.N. Iradmusa, Hv-structures associated with generalized P-hyperoperations., Bul. Iranian Math. Soc. V.24, N1, 1998, 33-45.
[21] P. Kambaki-Vougioukli, A. Karakos, N. Lygeros, T. Vougiouklis, Fuzzy instead of discrete, Annals of Fuzzy Math. Inf. (AFMI), V.2, N.1, 2011, 81-89.
[22] V. Leoreanu-Fotea, Ivo Rosenberg, B. Davvaz, T. Vougiouklis, A new class of n-ary hyperoperations, European J. Combinatorics, V.44, 2015, 265-273.
[23] N. Lygeros, T. Vougiouklis, The LV-hyperstructures, Ratio Math., 25, 2013, 59–66.
[24] A. Madanshekaf, Hv-structures associated with PQ- hyperoperations., J. of Disc. Math. Sc. & Crypt. V.6, N 2-3, 2003, 199-205.
[25] F. Marty, Sur un généralisation de la notion de groupe, 8éme Congrés Math. Scandinaves, Stockholm, (1934), 45-49.
[26] F. Marty, Sur les groupes et hypergroupes attachés à une fraction rationele, Annales Ec. Norm. Sup., V 53, (1936), 83-123.
[27] P. Nikolaidou, T. Vougiouklis, Hv-structures and the Bar in questionnaires, Italian J. Pure and Appl. Math. N.29, 2012, 341-350.
[28] R.M. Santilli, Hadronic Maths, Mechanics and Chemistry, Vol. I, II, III, IV and V, Int. Academic Press, USA, 2008.
[29] R.M. Santilli, T. Vougiouklis, Isotopies, Genotopies, Hyper- structures and their Appl., Proc. New Frontiers Hyperstructures and Related Algebras, Hadronic, 1996, 1-48.
[30] R.M. Santilli, T. Vougiouklis. Lie-admissible hyperalgebras, Italian J. Pure Appl. Math., N.31, 2013, 239-254.
[31] S. Spartalis, A. Dramalides, T. Vougiouklis, On Hv-group Rings, Algebras, Groups and Geometries, 15, 1998, 47-54.
[32] S. Vougiouklis, Hv-vector spaces from helix hyperoperations, Int. J. Math. Anal. (New Series), 1(2), 2009, 109-120.
[33] T. Vougiouklis, Cyclicity in a special class of hypergroups, Acta Un. Car. – Math. Et Ph., V.22, N1, 1981, 3-6.
[34] T. Vougiouklis, Representations of hypergroups, Hypergroup algebra, Proc. Convegno: ipergrouppi, altre strutture multivoche appl. Udine, 1985, 59-73.
[35] T. Vougiouklis, On affine Kac-Moody Lie algebras, Commentationes Math. Un. Car., V.26, 2, 1985, 387-395
[36] T. Vougiouklis, Representations of hypergroups by hypermatrices, Rivista Mat. Pura Appl., N 2, 1987, 7-19.
[37] T. Vougiouklis, Generalization of P-hypergroups, Rend. Circ. Mat. Palermo, S.II, 36, 1987, 114-121.
[38] T. Vougiouklis, Groups in hypergroups, Annals of Discrete Math. 37, 1988, 459-468
[39] T. Vougiouklis, On representations of algebraic multivalued structures, Rivista Mat. Pura Appl., N.7, 1990, 87-92.
[40] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Proc. 4th AHA, World Scientific, 1991, 203-211.
[41] T. Vougiouklis, The very thin hypergroups and the S-construction, Combinatorics ’88, Incidence Geometries Combinatorial Str., 2,1991, 471-477.
[42] T. Vougiouklis, Representations of hypergroups by generalized permutations, Algebra Universalis, 29, 1992, 172-183.
[43] T. Vougiouklis, Representations of Hv-structures, Proc. Int. Conf. Group Theory 1992, Timisoara, 1993, 159-184.
[44] T. Vougiouklis, Hyperstructures and their Representations, Monographs in Math., Hadronic Press, 1994.
[45] T. Vougiouklis, Some remarks on hyperstructures, Contemporary Math., Amer. Math. Society, 184, 1995, 427-431.
[46] T. Vougiouklis, A new class of hyperstructures, J.C.I.&S.S.,V.20, N.1-4, 1995, 229-239.
[47] T. Vougiouklis, Hv-groups defined on the same set, Discrete Math. 155, 1996, 259-265.
[48] T. Vougiouklis, Consructions of Hv-structures with desired fundamental structures, New frontiers in Hyperstructues, Hadronic Press, 1996, 177-188.
[49] T. Vougiouklis, On Hv-fields, 6th AHA, Prague 1996, Democritus Univ. Press, 1997, 151-159.
[50] T. Vougiouklis, Convolutions on WASS hyperstructures, Discrete Math. 174, 1997, 347-355.
[51] T. Vougiouklis, Enlarging Hv-structures, Algebras and Combinatorics, ICAC’97, Hong Kong, Springer-Verlag, 1999, 455-463.
[52] T. Vougiouklis, On Hv-rings and Hv-representations, Discrete Math., Elsevier, 208/209, 1999, 615-620.
[53] T. Vougiouklis, On hyperstructures obtained by attaching elements, Proc. C. Caratheodory in his…origins, Hadronic Press, 2001, 197-206.
[54] T. Vougiouklis, Finite Hv-structures and their representations, Rend. Seminario Mat. Messina S.II, V.9, 2003, 245-265.
[55] T. Vougiouklis, Attach, remove, absorb and merge elements, Proc. 8th AHA Congress, Spanidis Press, 2003, 251-260.
[56] T. Vougiouklis, The h/v-structures, J. Discrete Math. Sciences and Cryptography, V.6, 2003, N.2-3, 235-243.
[57] T. Vougiouklis, A hyperoperation defined on a groupoid equipped with a map, Ratio Math. on line, N.1, 2005. 25-36.
[58] T. Vougiouklis, -operations and Hv-fields, Acta Math. Sinica, (Engl. Ser.), V.24, N.7, 2008, 1067-1078.
[59] T. Vougiouklis, The Santilli’s theory ‘invasion’ in hyperstructures, Algebras, Groups and Geometries 28(1), 2011, 83-103
[60] T. Vougiouklis The e-hyperstructures, J. Mahani Math. Research Center, V.1, N.1, 2012, 13-28.
[61] T. Vougiouklis, The Lie-hyperalebras and their fundamental relations, Southeast Asian Bull. Math., V.37(4), 2013, 601-614.
[62] T. Vougiouklis, Lie-admissible hyperalgebras, Italian J. Pure Appl. Math., N.31, 2013,
[63] T. Vougiouklis, From Hv-rings to Hv-fields, Int. J. Algebraic Hyperstructures Appl. Vol.1, No.1, 2014, 1-13.
[64] T. Vougiouklis, On the isoHv-numbers, Hadronic J., Dec.5, 2014, 1-18.
[65] T. Vougiouklis, Lie-Santilli Admissibility using P-hyper- operations on matrices, Hadronic J. Dec.7, 2014, 1-14.
[66] T. Vougiouklis, Hypermatrix representations of finite Hv-groups, European J. Combinatorics, V.44 B, 2015, 307-315.
[67] T. Vougiouklis, Quiver of hyperstructures for Ying’s twin universes, American J. Modern Physics, 4(1-1), 2015, 30-33.
[68] T. Vougiouklis, S. Vougiouklis, The helix hyperoperations, Italian J. Pure Appl. Math., 18, 2005, 197-206.
[69] T. Vougiouklis, P. Kambaki-Vougioukli, On the use of the bar, China-USA Business Review, V.10, N.6, 2011, 484-489.
[70] T. Vougiouklis, P. Kambakis-Vougiouklis, Bar in Questionnaires, Chinese Business Review, V.12, N.10, 2013, 691-697.
Cite This Article
  • APA Style

    Thomas Vougiouklis. (2015). Hypermathematics, Hv-Structures, Hypernumbers, Hypermatrices and Lie-Santilli Addmissibility. American Journal of Modern Physics, 4(5-1), 38-46. https://doi.org/10.11648/j.ajmp.s.2015040501.15

    Copy | Download

    ACS Style

    Thomas Vougiouklis. Hypermathematics, Hv-Structures, Hypernumbers, Hypermatrices and Lie-Santilli Addmissibility. Am. J. Mod. Phys. 2015, 4(5-1), 38-46. doi: 10.11648/j.ajmp.s.2015040501.15

    Copy | Download

    AMA Style

    Thomas Vougiouklis. Hypermathematics, Hv-Structures, Hypernumbers, Hypermatrices and Lie-Santilli Addmissibility. Am J Mod Phys. 2015;4(5-1):38-46. doi: 10.11648/j.ajmp.s.2015040501.15

    Copy | Download

  • @article{10.11648/j.ajmp.s.2015040501.15,
      author = {Thomas Vougiouklis},
      title = {Hypermathematics, Hv-Structures, Hypernumbers, Hypermatrices and Lie-Santilli Addmissibility},
      journal = {American Journal of Modern Physics},
      volume = {4},
      number = {5-1},
      pages = {38-46},
      doi = {10.11648/j.ajmp.s.2015040501.15},
      url = {https://doi.org/10.11648/j.ajmp.s.2015040501.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.s.2015040501.15},
      abstract = {We present the largest class of hyperstructures called Hv-structures. In Hv-groups and Hv-rings, the fundamental relations are defined and they connect the algebraic hyperstructure theory with the classical one. Using the fundamental relations, the Hv-fields are defined and their elements are called hypernumbers or Hv-numbers. Hv-matrices are defined to be matrices with entries from an Hv-field. We present the related theory and results on hypermatrices and on the Lie-Santilli admissibility},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Hypermathematics, Hv-Structures, Hypernumbers, Hypermatrices and Lie-Santilli Addmissibility
    AU  - Thomas Vougiouklis
    Y1  - 2015/08/11
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ajmp.s.2015040501.15
    DO  - 10.11648/j.ajmp.s.2015040501.15
    T2  - American Journal of Modern Physics
    JF  - American Journal of Modern Physics
    JO  - American Journal of Modern Physics
    SP  - 38
    EP  - 46
    PB  - Science Publishing Group
    SN  - 2326-8891
    UR  - https://doi.org/10.11648/j.ajmp.s.2015040501.15
    AB  - We present the largest class of hyperstructures called Hv-structures. In Hv-groups and Hv-rings, the fundamental relations are defined and they connect the algebraic hyperstructure theory with the classical one. Using the fundamental relations, the Hv-fields are defined and their elements are called hypernumbers or Hv-numbers. Hv-matrices are defined to be matrices with entries from an Hv-field. We present the related theory and results on hypermatrices and on the Lie-Santilli admissibility
    VL  - 4
    IS  - 5-1
    ER  - 

    Copy | Download

Author Information
  • Democritus University of Thrace, School of Education, Alexandroupolis, Greece

  • Sections