A general review on cuprate based superconducting materials has been made. The special features of cuprate based high-temperature superconductors have been explained from the material side and the physical properties side. The present statuses on applications of cuprate based high-temperature superconductors have been included. In this paper, all characteristics of cuprate based superconductors depending upon the recent discoveries and applications of those compounds have been included and explained so that a researcher can get a good idea about this field easily. The article gives a summary of the prevailing arguments of researchers to relate the material to cuprates and also the comparative features of many families of superconductors. The existing challenges, such as flux pinning, inter-grain Josephson losses due to population of voids and attempts towards the solution of these problems have been made by researcher have also been discussed. Since the high temperature superconductivity was discovered in La2-xBaxCuO4 in 1986, many research works have been done on this topic, but in this review paper we emphasis cuprate based material and we noted all properties in dividing many section and also made a comparison between different materials.
Published in | American Journal of Physics and Applications (Volume 3, Issue 2) |
DOI | 10.11648/j.ajpa.20150302.15 |
Page(s) | 39-56 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Superconductors, Cuprate-Based Superconductors, Applications
[1] | W. Buckel, R. Kleiner, Supraleitung – Grundlagen and Anwendungen, WILEY – VCH Verlag, Weinheim (2013); W. Buckel, R. Kleiner, Superconductivity – Fundamentals and Applications, WILEY-VCH Verlag, Weinheim (2004). |
[2] | R. A. Shukor, High Temperature Superconductors: Materials, Mechanisms and Applications, Akademi Sains, Malaysia (2009). |
[3] | A. Vilenkin and E. P. S. Shellard, Cosmic Strings and other Topological Defects, Cambridge University Press, Cambridge (1994). |
[4] | A. Sedrakian, Phys. Rev. D 71, 083003 (2005). |
[5] | M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schafer, Rev. Mod. Phys. 80, 1455 (2008). |
[6] | T. H. Geballe, Science 293 (2001) 223. |
[7] | E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel'nik, N. J. Curro, J. D. Thompson, S. M. Stishov, Nature 428 (2004) 542. |
[8] | C. Buzea, T. Yamashita, Supercond. Sci. Techn. 14 (2001) R115. |
[9] | J. Bardeen, L. N. Cooper, and J. R. Schrieffer: Phys. Rev. 108 (1957) 1175. |
[10] | J. R. Schrieffer: Theory of Superconductivity (Westview Press, Oxford, U.K, 1999). |
[11] | Emergence of superconductivity in heavy-electron materials, Proceedings of the National Academy of Sciences 111:51 18178-18182 (2014), doi:10.1073/pnas.1422100112 |
[12] | Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516 71, DOI: 10.1038/nature13875 |
[13] | H. K. Onnes, Communications from the Physical Laboratory of theUniversity of Leiden (1911). |
[14] | W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933). |
[15] | F. H. London, Proceedings of the Royal Society of London A 149, 71 (1935). |
[16] | V. L. Ginzburg, L. D. Landau, and Zh. Eksperim, I Teor. Fiz.20, 1064 (1950). |
[17] | J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957). |
[18] | W. S. Corak, B. B. Goodman, C. B. Satterthwaite, and A. Wexler, Phys. Rev. 96, 1442 (1954). |
[19] | W. S. Corak, B. B. Goodman, C. B. Satterthwaite, and A. Wexler, Phys. Rev. 102, 656 (1956). |
[20] | M. A. Biondi, M. P. Garfunkel, and A. O. McCoubrey, Phys. Rev. 101, 1427 (1956). |
[21] | R.E. Glover and M. Tinkham, Phys. Rev. 104, 844 (1956). |
[22] | R.E. Glover and M. Tinkham, Phys. Rev. 108, 243 (1957). |
[23] | E. Maxwell, Phys. Rev. 78, 477 (1950). |
[24] | C. A. Reynolds, B. Serin, W. H. Wright, and L. B. Nesbit, Phys. Rev. 78, 487 (1950). |
[25] | J.G Bednorz, K.A. Mueller (1986). “Possible high Tc superconductivity in the Ba-La-Cu-O system” Zeitschrift fur Physik B 64 (2): 189, 193. |
[26] | D. A. Wollman, D. J. V. Harlingen, W. C. Lee, D. M. Ginsberg, and A. J. Leggett, Phys. Rev. Lett. 71, 2134 (1993). |
[27] | C. C. Tsuei, J. R. Kirtley, C. C. Chi, L. S. Yu-Jahnes, A. Gupta, T. Shaw, J. Z.Sun, and M. B. Ketchen, Phys. Rev. Lett. 73, 593 (1994). |
[28] | C. E. Gough, M. S. Colclough, E. M. Forgan, R. G. Jordan, M. Keene, C. M. Muirhead, A. I. M. Rae, N. Thomas, J. S. Abell, and S. Sutton, Nature 326, 855 (1987). |
[29] | A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng,E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishios, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z.-X. Shen, Nature 412, 510 (2001). |
[30] | Ginzburg, V.L. and Landau, L.D. (1950) on the theory of superconductivity. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 20, 1064–1082. English translation in: L.D. Landau, Collected papers (Oxford: Pergamon Press, 1965). |
[31] | Josephson, D. (1962) possible new effects in superconductive tunneling. Physics Letter, 1, 251- 253. |
[32] | Anderson, P.W. and Rowell, J.M. (1963) Probable observation of the Josephson superconducting tunneling effect. Physics Review Letter, 10, 230–232. |
[33] | Shoji TANAKA “High-Temperature Superconductivity” Japanese Journal of Applied Physics-vol. 45, No. 12, (2006). |
[34] | Presland, M.R., Tallon, J.L., Buckley, R.G., Liu, R.S., Flower, N.E.: General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors. Physica C, Supercond. 176(1–3), 95–105 (1991). |
[35] | Obertelli, S.D., Cooper, J.R., Tallon, J.L.: Systematics in the thermoelectric power of high-Tc oxides. Phys. Rev. B 46(22), 14928–14931 (1992). |
[36] | Takagi, H., Batlogg, B., Kao, H.L., Kwo, J., Cava, R.J., Krajewski, J.J., Peck,W.F. Jr.: Systematic evolution of temperature-dependent resistivity in La2−x SrxCuO4. Phys. Rev. Lett. 69(20), 2975–2978 (1992) |
[37] | Marshall, D.S., Dessau, D.S., Loeser, A.G., Park, C.H., Matsuura, A.Y., Eckstein, J.N., Bozovic, I., Fournier, P., Kapitulnik, A., Spicer, W.E., Shen, Z.X.: Unconventional electronicstructure evolution with hole doping in Bi2Sr2CaCu2O8+δ : angle-resolved photoemission results. Phys. Rev. Lett. 76(25), 4841–4844 (1996). |
[38] | Loeser, A.G., Shen, Z.X., Dessau, D.S., Marshall, D.S., Park, C.H., Fournier, P., Kapitulnik, A.: Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+δ . Science 273(5273), 325–329 (1996). |
[39] | Ding, H., Yokoya, T., Campuzano, J.C., Takahashi, T., Randeria, M., Norman, M.R., Mochiku, T., Kadowaki, K., Giapintzakis, J.: Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature 382(6586),51-54 (1996). |
[40] | Akimitsu, J., Yamazaki, A., Sawa, H., Fujiki, H.: Superconductivity in the Bi−Sr−Cu−O system. Jpn. J. Appl. Phys. 26(Part 2, 12), L2080–L2081 (1987). |
[41] | Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: A new high-Tc oxide superconductor without a rare earth element. Jpn. J. Appl. Phys. 27(Part 2, 2), L209–L210 (1988). |
[42] | Pickett, W.E.: Electronic structure of the high-temperature oxide superconductors. Rev. Mod.Phys. 61(2), 433–512 (1989). |
[43] | A. Sedky, A. A. Almulhem, and S. S. Ibrahim, Smart Mater. Struct. 15, N99 (2006). |
[44] | M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu (1987). Physical Review Letters 58 (9): 908-910. |
[45] | C. Michel et al., Z. Phys. B68, 421 (1987). |
[46] | H. Maeda et al., Jpn. J. Appl. Phys. 27, L209 (1988). |
[47] | J.M. Jarascan et al., Phys. Rev. B37, 9382 (1988). |
[48] | S.A. Sunshine et al., Phys. Rev. B38, 893 (1988). |
[49] | J.M. Tarascan et al., Phys. Rev. B38, 8885 (1988). |
[50] | C. Politis, Appl. Phys. A 45, 261 (1988). |
[51] | Z. Z. Sheng and A. M. Hermann, Nature 332, 55 (1988). |
[52] | Z. Z. Sheng, A. M. Hermann, A. E. Ali, C. Almasan, J. Estrada, T. Datta, and R. J. Matson, Phys. Rev. Lett. 60, 937 (1988). |
[53] | Z. Z. Sheng and A. M. Hermann, Nature 332, 138 (1988). |
[54] | G. Malandrino, D. S. Richeson, T. J. Marks, Donald C. De Groot, J. L. Schindler, and C. R. Kannewurf, Appl. Phys. Lett. 58, 182 (1991). |
[55] | M. L. Chu, H. L. Chang, C. Wang, J. Y. Juang, T. M. Uen, and Y. S. Gou, Appl. Phys. Lett. 59, 1123 (1991). |
[56] | W. L. Oslon, M. M. Eddy, T. W. James, R. B. Hammond, G. Gruner, and L. Drabeck, Appl. Phys. Lett. 55, 188 (1989). |
[57] | Sheng, Z. Z.; Hermann, A. M.; El Ali, A; Almasan, C; Estrada, J; Datta, T; Matson, R. J. (1988). "Superconductivity at 90 K in the Tl-Ba-Cu-O system” Physical Review Letters 60(10): 937–940. |
[58] | Sheng, Z. Z.; Hermann, A. M. (1988). "Superconductivity in the rare-earth-free Tl-Ba-Cu-O system above liquid-nitrogen temperature". Nature- 332 (6159) 55. |
[59] | S.N. Putilin et al., Mater. Res. Bull. 26, 1299 (1991). |
[60] | S.S.P. Parkin et al., Phys. Rev. B38, 6531 (1988). |
[61] | S.N. Putilin et al., Nature 362, 226 (1993). |
[62] | S.N. Putilin et al., Physica C212, 266 (1993). |
[63] | A. Schlling et al., Nature 363, 56 (1993). |
[64] | D. J. Singh and M.-H. Du, Phys. Rev. Lett. 100, 237003 (2008). |
[65] | M. G. Zhao and S. Y. Wang, Cond-Mat/0111268v1 (2001). |
[66] | J.R. Hull, Rep. Prog. Phys. 66, 1865 (2003) |
[67] | J.N.A. Matthews, Physics Today 61, 30 (2008) |
[68] | A.P. Malozemoff, S. Fleshler, M. Rupich, C. Thieme, X. Li, W. Zhang, A. Otto, J. Maguire, D. Folts, J. Yuan, H.-P. Kraemer, W. Schmidt, M. Wohlfart, H.-W. Neumueller, Supercond. Sci. Technol. 21, 034005 (2008). |
[69] | V. Selvamanickam, Y. Chen, X. Xiong, Y. Xie, X. Zhang, Y. Qiao, J. Reeves, A. Rar, R. Schmidt, K. Lenseth, Physica C 463–465, 482 (2007). |
[70] | T. Matsushita, M. Kiuchi, K. Kimura, S. Takayama, Y. Yamada, Y. Shiohara, J. Fujikami, K. Hayashi, K. Sato, Physica C 463–465, 686 (2007). |
APA Style
Md. Atikur Rahman, Md. Zahidur Rahaman, Md. Nurush Samsuddoha. (2015). A Review on Cuprate Based Superconducting Materials Including Characteristics and Applications. American Journal of Physics and Applications, 3(2), 39-56. https://doi.org/10.11648/j.ajpa.20150302.15
ACS Style
Md. Atikur Rahman; Md. Zahidur Rahaman; Md. Nurush Samsuddoha. A Review on Cuprate Based Superconducting Materials Including Characteristics and Applications. Am. J. Phys. Appl. 2015, 3(2), 39-56. doi: 10.11648/j.ajpa.20150302.15
AMA Style
Md. Atikur Rahman, Md. Zahidur Rahaman, Md. Nurush Samsuddoha. A Review on Cuprate Based Superconducting Materials Including Characteristics and Applications. Am J Phys Appl. 2015;3(2):39-56. doi: 10.11648/j.ajpa.20150302.15
@article{10.11648/j.ajpa.20150302.15, author = {Md. Atikur Rahman and Md. Zahidur Rahaman and Md. Nurush Samsuddoha}, title = {A Review on Cuprate Based Superconducting Materials Including Characteristics and Applications}, journal = {American Journal of Physics and Applications}, volume = {3}, number = {2}, pages = {39-56}, doi = {10.11648/j.ajpa.20150302.15}, url = {https://doi.org/10.11648/j.ajpa.20150302.15}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpa.20150302.15}, abstract = {A general review on cuprate based superconducting materials has been made. The special features of cuprate based high-temperature superconductors have been explained from the material side and the physical properties side. The present statuses on applications of cuprate based high-temperature superconductors have been included. In this paper, all characteristics of cuprate based superconductors depending upon the recent discoveries and applications of those compounds have been included and explained so that a researcher can get a good idea about this field easily. The article gives a summary of the prevailing arguments of researchers to relate the material to cuprates and also the comparative features of many families of superconductors. The existing challenges, such as flux pinning, inter-grain Josephson losses due to population of voids and attempts towards the solution of these problems have been made by researcher have also been discussed. Since the high temperature superconductivity was discovered in La2-xBaxCuO4 in 1986, many research works have been done on this topic, but in this review paper we emphasis cuprate based material and we noted all properties in dividing many section and also made a comparison between different materials.}, year = {2015} }
TY - JOUR T1 - A Review on Cuprate Based Superconducting Materials Including Characteristics and Applications AU - Md. Atikur Rahman AU - Md. Zahidur Rahaman AU - Md. Nurush Samsuddoha Y1 - 2015/03/04 PY - 2015 N1 - https://doi.org/10.11648/j.ajpa.20150302.15 DO - 10.11648/j.ajpa.20150302.15 T2 - American Journal of Physics and Applications JF - American Journal of Physics and Applications JO - American Journal of Physics and Applications SP - 39 EP - 56 PB - Science Publishing Group SN - 2330-4308 UR - https://doi.org/10.11648/j.ajpa.20150302.15 AB - A general review on cuprate based superconducting materials has been made. The special features of cuprate based high-temperature superconductors have been explained from the material side and the physical properties side. The present statuses on applications of cuprate based high-temperature superconductors have been included. In this paper, all characteristics of cuprate based superconductors depending upon the recent discoveries and applications of those compounds have been included and explained so that a researcher can get a good idea about this field easily. The article gives a summary of the prevailing arguments of researchers to relate the material to cuprates and also the comparative features of many families of superconductors. The existing challenges, such as flux pinning, inter-grain Josephson losses due to population of voids and attempts towards the solution of these problems have been made by researcher have also been discussed. Since the high temperature superconductivity was discovered in La2-xBaxCuO4 in 1986, many research works have been done on this topic, but in this review paper we emphasis cuprate based material and we noted all properties in dividing many section and also made a comparison between different materials. VL - 3 IS - 2 ER -