| Peer-Reviewed

The Effect of Microsilica and Aluminum Metal Powder on the Densification Parameters, Mechanical Properties and Microstructure of Alumina–Mullite Ceramic Composites

Received: 26 June 2015     Accepted: 9 July 2015     Published: 28 July 2015
Views:       Downloads:
Abstract

Microsilica, or silica fume, is an amorphous type of silica mostly collected as byproduct of the silicon and ferro-silicon alloy production. In this work, low shrinkage alumina-mullite ceramic composites were prepared from mixtures of calcined alumina, silica fume and aluminum metal powder and sintered at 1550oC for 2 hrs. The influence of silica fume and aluminum powder on the densification parameter, in situ mullite formed and mechanical properties of sintered samples were studied. The phase composition and the microstructural evolution of the sintered samples were also investigated. The results showed that, silica fume enhances the mechanical properties of sintered samples, while the aluminum powder improves the mullite formation process. Ultra low shrinkage (close to zero), and good mechanical properties (CCS ≈ 70 MPa) of alumina-mullite ceramic composites were achieved. Alumina-mullite ceramic composites are considered a promising material for high temperature applications.

Published in Advances in Materials (Volume 4, Issue 4)
DOI 10.11648/j.am.20150404.12
Page(s) 80-84
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Ceramics, X-ray Diffraction, Mechanical Properties, Microstructure

References
[1] Siddique R., Khan M.I., Supplementary cementing materials, chapter 2, silica fume, Springer-Verlag Berlin Heidelberg, (2011).
[2] Wahsh M.M.S., Khattab R.M., Awaad M., Thermo-mechanical properties of mullite/zirconia reinforced alumina ceramic composites, Mater. Design, 41 (2012) 31–36.
[3] Bakr I.M., Wahsh M.M.S., Fabrication and characterization of multi phase ceramic composites based on zircon–alumina–magnesia mixtures, Mater. Design, 35 (2012) 99-105.
[4] Medvedovski E., Alumina–mullite ceramics for structural applications, Ceram. Int., 32 (2006) 369–375.
[5] Aksel C., The effect of mullite on the mechanical properties and thermal shock behaviour of alumina–mullite refractory materials, Ceram. Int., 29 (2003) 183–188.
[6] Takei T., Kameshima Y., Yasumori A., Okada K., Crystallisation kinetics of mullite in alumina–silica glass fibers, J. Am. Ceram. Soc., 82 (1999) 2876–2880.
[7] Ghate B.B., Hasselman D.P.H., Spriggs R.M., Synthesis and characterization of high purity, fine grained mullite, Am. Ceram. Soc. Bull., 52 (1973) 670–672.
[8] Ibrahim D.M., Naga S.M., Kader Z.A., Salam E.A., Cordierite– mullite refractories, Ceram. Int., 21 (1995) 265–269.
[9] Zhong X.C., Sun G.C., Thermomechanical properties of corundum–mullite–zirconia materials, in: UNITECR ’97, Proc. Unified Int. Tech. Conf. on Refractories, 5th Biennial Worldwide Congress, Refractories—A Worldwide Technology, New Orleans, (1997), 943–952.
[10] Pask J.A., Importance of starting materials on reactions and haseequilibria in the Al¬2O3-SiO2 system, J. Eur. Ceram. Soc., 16 (1996) 101.
[11] V. Viswabaskaran, F.D. Gnanam, M. Balasubramanian, Mullitisationbehaviour of calcined clay–alumina mixtures, Ceram. Int. 29, (2003) 561-571.
[12] Schneider H., Schrener J., Hildmann B.,Structure and properties of mullite, J. Eur. Ceram. Soc., 28 (2008) 329-344.
[13] Wang J., Piramoon M.R., Ponton C.B., Marcus P.M., A study in short alumina-fiber-reinforced mullite composites, Trans. J. Br. Ceram. Soc. 90 (1991) 105–110.
[14] Mazdiyasni K.S., Brown L.M., Synthesis and mechanical properties of stoichiometric aluminium silicate (mullite), J. Am. Ceram. Soc., 55 (1972) 548–552.
[15] Aksel C., The role of fine alumina and mullite particles on the thermomechanicalbehaviour of alumina–mullite refractory materials, Mater. Lett., 57 (2002) 708–714.
[16] Sedaghat A., Taheri-Nassaj E., Soraru G.D., Ebadzadeh T., Microstructure development and phase evolution of alumina–mullitenanocomposite, Ceram. Int., 40 (2014) 2605–2611.
[17] Claussen N., Le T., Wu S., Claussen N., Le T., Wu S., Low Shrinkage Reaction Bonded Alumina, J. Eur. Ceram. Soc., 5 (1989) 29-35.
[18] Claussen N., Travitzky N.A., Wu S., Tailoring of Reaction-Bonded Al2O3 (RBAO) Ceramics, Ceram. Eng. Sci. Proc., 11 (1990) 806-820.
[19] Claussen N., Wu S., Holz D., Reaction-Bonded of Aluminum Oxide (RBAO) composites: processing reaction mechanisms, J. Eur. Ceram. Soc. 14 (1994) 97-109.
[20] Wu S., Claussen N., Fabrication and properties of low-shrinkage reaction-bonded mullite, J. Am. Ceram. Soc., 74 (1991) 2460-63.
[21] Holz D., Pagel S., Bowen C., Wu S.X., Claussen N., Fabrication of low to zero shrinkage reaction-bonded mullite composites, J. Eur. Ceram. Soc., 16 (1996) 255-260.
[22] She J.H., Schneider H., Inoue T., Suzuki M., Sodeoka S., Ueno K., Fabrication of low-shrinkage reaction-bonded alumina−mullite composites, Mater. Chem. Phys., 68 (2001) 105–109.
[23] Ruan G., Zhang Z., Yin M., Xu G., Effect of aluminum powder on the synthesis of cordndum-mullite composites, Ceram – Silikáty, 57 (2013) 133-137.
[24] Aksay I.A., Dabbs D.M., Sarikaya M., Mullite for structural electronic and optical application, J. Am. Ceram. Soc. 74 (1991) 2343–2358.
[25] Todd R.I., Bourke M.A.M., Borsa C.E., Brook R.J., Neutron diffraction measurements of residual stresses in alumina/SiC nano composites, Acta Mater., 45 (1997) 1791–1800.
[26] Luo H.H., Zhang F.C., Roberts S.G., Wear resistance of reaction sintered alumina/mullite composites, Mater. Sci. Eng. A 478 (2008) 270–275.
[27] Kim B.N., Wakayama S., Kawahara M., Characterization of 2-dimesional crack propagation behavior simulation and analysis, Int. J. Fracture 75 (1996) 247–259.
[28] Naga S.M., Bondioli F., Wahsh M.M.S., El-Omla M., Utilization of granodiorite in the production of porcelain stoneware tiles, Ceram. Int. 38 (2012) 6267–6272.
[29] Jo W., Kim D. Y., Hwang N. M., effect of interface structure on the microstructural evolution of ceramics,J. Am. Ceram. Soc., 90 (2007) 2293-2295.
[30] Kumazawa T., Kanzaki S., Asaumi J., Kanzaki S., Sinterability of SiO2-Al2O3 prepared by spray Pyrolysis effect of chemical composition, J. Ceram. Soc. Jpn., 94 (1986) 485-490.
Cite This Article
  • APA Style

    M. M. S. Wahsh, H. E. H. Sadek, S. Abd El-Aleem, H. H. M. Darweesh. (2015). The Effect of Microsilica and Aluminum Metal Powder on the Densification Parameters, Mechanical Properties and Microstructure of Alumina–Mullite Ceramic Composites. Advances in Materials, 4(4), 80-84. https://doi.org/10.11648/j.am.20150404.12

    Copy | Download

    ACS Style

    M. M. S. Wahsh; H. E. H. Sadek; S. Abd El-Aleem; H. H. M. Darweesh. The Effect of Microsilica and Aluminum Metal Powder on the Densification Parameters, Mechanical Properties and Microstructure of Alumina–Mullite Ceramic Composites. Adv. Mater. 2015, 4(4), 80-84. doi: 10.11648/j.am.20150404.12

    Copy | Download

    AMA Style

    M. M. S. Wahsh, H. E. H. Sadek, S. Abd El-Aleem, H. H. M. Darweesh. The Effect of Microsilica and Aluminum Metal Powder on the Densification Parameters, Mechanical Properties and Microstructure of Alumina–Mullite Ceramic Composites. Adv Mater. 2015;4(4):80-84. doi: 10.11648/j.am.20150404.12

    Copy | Download

  • @article{10.11648/j.am.20150404.12,
      author = {M. M. S. Wahsh and H. E. H. Sadek and S. Abd El-Aleem and H. H. M. Darweesh},
      title = {The Effect of Microsilica and Aluminum Metal Powder on the Densification Parameters, Mechanical Properties and Microstructure of Alumina–Mullite Ceramic Composites},
      journal = {Advances in Materials},
      volume = {4},
      number = {4},
      pages = {80-84},
      doi = {10.11648/j.am.20150404.12},
      url = {https://doi.org/10.11648/j.am.20150404.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.am.20150404.12},
      abstract = {Microsilica, or silica fume, is an amorphous type of silica mostly collected as byproduct of the silicon and ferro-silicon alloy production. In this work, low shrinkage alumina-mullite ceramic composites were prepared from mixtures of calcined alumina, silica fume and aluminum metal powder and sintered at 1550oC for 2 hrs. The influence of silica fume and aluminum powder on the densification parameter, in situ mullite formed and mechanical properties of sintered samples were studied. The phase composition and the microstructural evolution of the sintered samples were also investigated. The results showed that, silica fume enhances the mechanical properties of sintered samples, while the aluminum powder improves the mullite formation process. Ultra low shrinkage (close to zero), and good mechanical properties (CCS ≈ 70 MPa) of alumina-mullite ceramic composites were achieved. Alumina-mullite ceramic composites are considered a promising material for high temperature applications.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Effect of Microsilica and Aluminum Metal Powder on the Densification Parameters, Mechanical Properties and Microstructure of Alumina–Mullite Ceramic Composites
    AU  - M. M. S. Wahsh
    AU  - H. E. H. Sadek
    AU  - S. Abd El-Aleem
    AU  - H. H. M. Darweesh
    Y1  - 2015/07/28
    PY  - 2015
    N1  - https://doi.org/10.11648/j.am.20150404.12
    DO  - 10.11648/j.am.20150404.12
    T2  - Advances in Materials
    JF  - Advances in Materials
    JO  - Advances in Materials
    SP  - 80
    EP  - 84
    PB  - Science Publishing Group
    SN  - 2327-252X
    UR  - https://doi.org/10.11648/j.am.20150404.12
    AB  - Microsilica, or silica fume, is an amorphous type of silica mostly collected as byproduct of the silicon and ferro-silicon alloy production. In this work, low shrinkage alumina-mullite ceramic composites were prepared from mixtures of calcined alumina, silica fume and aluminum metal powder and sintered at 1550oC for 2 hrs. The influence of silica fume and aluminum powder on the densification parameter, in situ mullite formed and mechanical properties of sintered samples were studied. The phase composition and the microstructural evolution of the sintered samples were also investigated. The results showed that, silica fume enhances the mechanical properties of sintered samples, while the aluminum powder improves the mullite formation process. Ultra low shrinkage (close to zero), and good mechanical properties (CCS ≈ 70 MPa) of alumina-mullite ceramic composites were achieved. Alumina-mullite ceramic composites are considered a promising material for high temperature applications.
    VL  - 4
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Refractories, Ceramics and Building Materials Department, National Research Centre, Cairo, Egypt

  • Refractories, Ceramics and Building Materials Department, National Research Centre, Cairo, Egypt

  • Chemistry Department, Faculty of Science, Fayoum University, El-Fayoum, Egypt

  • Refractories, Ceramics and Building Materials Department, National Research Centre, Cairo, Egypt

  • Sections