When a beam, made of material whose properties would be affected at temperatures above 37°C and with irregular geometry at its ends, is subjected to a bending test; it is necessary to guarantee the stability of its support points to achieve success in the execution of the test. This paper presents a study on the properties of a particular composite material that is used as a filling for certain hollow supports with the aim to provide stability to the ends of the beam when the load is applied. Although the mixture employed reacts exothermically, it does not exceed the maximum temperature level above which the mechanical properties of the constituent material of the beam would be affected. In addition, the strength of the mixture is such that it is able to withstand the compression stresses that are generated during the test.
Published in | Advances in Materials (Volume 6, Issue 6) |
DOI | 10.11648/j.am.20170606.12 |
Page(s) | 115-121 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Hardness, Stress Measurements, Composites
[1] | A. Mendoza, “Estudio de las propiedades mecánicas del sistema óseo”, Ingeniería e Investigación, no. 23, pp. 14–19, 1991. |
[2] | M. P. Groover, Fundamentos de manufactura moderna: materiales, procesos y sistemas. Pearson Educación, 1997. |
[3] | J. Pérez-Ilzarbe, J. Fernández-Carrasquilla, C. Luis-Pérz, "Estudio de la variación, con el calentamiento, de las propiedades mecánicas y de la re-cristalización de la hoja fina de aluminio 1050A". Memorias XI Congreso nacional de propiedades mecánicas de sólidos. Universidad de Cádiz, pg. 115. El Bosque, Sierra de Grazalema; 9 al 12 de septiembre, Cádiz, España, 2008. |
[4] | S. C. Cowin and others, Bone mechanics handbook. CRC press, 2001. |
[5] | D. Martínez, A. Ortiz, and E. I. Ramírez, “Comportamiento mecánico de hueso femoral porcino bajo cargas a flexión”. Memorias del 14 Congreso Internacional anual de la SOMIM; 17 al 19 de septiembre, Puebla, México, 2008. |
[6] | J. Grasa; L. A. González; M. J. Gómez-Benito; J. M. García-Aznar; J. A. Bea; P. J. Laborda: M. Doblaré, “Caracterización mecánica de las propiedades del tejido óseo cortical”. Revista Anales de Mecánica de la Fractura, Vol. 1, Nro. 25, pp. 23-28. 2008. |
[7] | J. F. McCabe and A. W. G. Walls, Applied Dental Materials. John Wiley & Sons, 2013. |
[8] | “Yesos Dentales”. Krobalto. [Online]. Available: http://krobalto.com/tienda/153-yesos-dentales. [Accessed: 05-Dec-2016]. |
[9] | J. R. Underwood and M. Chiuini, Structural Design: A Practical Guide for Architects. John Wiley & Sons, 1998. |
[10] | S. Crespo-Escobar, Materiales de construcción para edificación y obra civil. Editorial Club Universitario, Alicante, España, 2013. |
[11] | B. ASTM, “C472-Standard Test Methods for Phyical Testing of Gypsum”, Gypsum Plasters and Gypsum Concrete, p. 2, 1999. |
[12] | H. G. Pulido, Análisis y diseño de experimentos (3a. ed.). McGraw-Hill Interamericana, 2000. |
[13] | M. P. Pesántez-Moyano, “Confort térmico en el área social de una vivienda unifamiliar en Cuenca-Ecuador”, Universidad de Cuenca, Tesina previa a la obtención del título Diseño de Interiores, 2012. [Online]. Available: http://dspace.ucuenca.edu.ec/bitstream/123456789/393/1/tesis.pdf |
[14] | L. Wierzbicki, “Strength properties of the low-melting-point alloys”, Journal of Achievements in Materials and Manufacturing Engineering, vol. 67, no. 1, 2014. |
[15] | H. Hansmann, Compendium Composites. ASM hand book on Polyester resins: ASM International: Ohio, 2003. |
[16] | A. Besednjak, Materiales Compuestos. Vol. 100, Univ. Politécnica de Catalunya, 2005. |
[17] | D. E. Rodríguez-Félix, J. M. Quiroz-Castillo, T. Del Castillo-Castro, M. M. Castillo-Ortega, L. P. Ramírez-Rodríguez, D. García-Bedoya, T. Mendívil-Reynoso, “Preparación y caracterización de materiales compuestos degradables”. Superficies y Vacío, vol. 28, no. 1, pp. 18-24, 2015. |
[18] | A. Rahhali, “Valorización de residuos queratínicos para la obtención de materiales biocompuestos”. Tesis de doctorado. Escola d’Enginyeria de Terrassa. Universitat Politècnica de Catalunya. 2015 [Online]. Available: (http://upcommons.upc.edu/handle/2117/95771) |
[19] | R. Salgado-Delgado, A. Olarte-Paredes, A. M. Salgado-Delgado, Z. Vargas-Galarza, E. García-Hernández, E. Rubio-Rosas, T. López-Lara, J. B. Hernández-Zaragoza, “Caracterización eléctrica y térmica de un material compuesto de HDPE/PP y/ CB/CNT”. Acta Universitaria, vol. 26, no. 2, pp. 55-62, 2016. (doi: 10.15174/au.2016.980). |
[20] | S. Cardona, D. Peláez, S. Betancourt, “Influencia del tipo de carga sobre el mecanizado de materiales compuestos de poliéster insaturado”. Revista Colombiana de Materiales. no. 5 pp. 42-47, 2013. |
[21] | V. W. Álvarez –Arboleda, “Desempeño mecánico de materiales compuestos termoplásticos reforzados con fibras naturales para rotomoldeo”. Proyecto de Grado. Universidad Autónoma de Occidente. Facultad de Ingeniería; Departamento de Energética y Mecánica. Santiago de Cali, Colombia, 2014. [Online]. Available: (http://hdl.handle.net/10614/6894) |
[22] | C. Fioretti, A. Galán, R. Moine, M. Varela, P. Varela, H. Mouguelar, S. Gigena, F. Bonino, R. Quinteros, J. Natali, “Características mecánicas dinámicas de la tibia aislada de perro sometida a prueba de impacto”. Int. J. Morphol., vol. 31, no. 2. pp. 562-569, 2013. |
[23] | M. León, E. I. Ramírez, O. Ruiz, V. H. Jacobo, “Análisis de la rigidez de un fémur a partir del modelado de un ensayo de flexión en cuatro puntos”. Memorias del XXII Congreso de la SOMIM y XIV Congreso IBEROMAT. Septiembre de 2016 CD. Mérida, Yucatán. México, 2016. |
APA Style
Gabriela Abad-Farfán, Tito Fernando Muñoz-Cuenca, Paúl Bolivar Torres-Jara, Efrén Vázquez-Silva. (2017). Obtaining a Gypsum-Cement Blend, to Be Used as Filling, with Low Hardening Temperature. Advances in Materials, 6(6), 115-121. https://doi.org/10.11648/j.am.20170606.12
ACS Style
Gabriela Abad-Farfán; Tito Fernando Muñoz-Cuenca; Paúl Bolivar Torres-Jara; Efrén Vázquez-Silva. Obtaining a Gypsum-Cement Blend, to Be Used as Filling, with Low Hardening Temperature. Adv. Mater. 2017, 6(6), 115-121. doi: 10.11648/j.am.20170606.12
AMA Style
Gabriela Abad-Farfán, Tito Fernando Muñoz-Cuenca, Paúl Bolivar Torres-Jara, Efrén Vázquez-Silva. Obtaining a Gypsum-Cement Blend, to Be Used as Filling, with Low Hardening Temperature. Adv Mater. 2017;6(6):115-121. doi: 10.11648/j.am.20170606.12
@article{10.11648/j.am.20170606.12, author = {Gabriela Abad-Farfán and Tito Fernando Muñoz-Cuenca and Paúl Bolivar Torres-Jara and Efrén Vázquez-Silva}, title = {Obtaining a Gypsum-Cement Blend, to Be Used as Filling, with Low Hardening Temperature}, journal = {Advances in Materials}, volume = {6}, number = {6}, pages = {115-121}, doi = {10.11648/j.am.20170606.12}, url = {https://doi.org/10.11648/j.am.20170606.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.am.20170606.12}, abstract = {When a beam, made of material whose properties would be affected at temperatures above 37°C and with irregular geometry at its ends, is subjected to a bending test; it is necessary to guarantee the stability of its support points to achieve success in the execution of the test. This paper presents a study on the properties of a particular composite material that is used as a filling for certain hollow supports with the aim to provide stability to the ends of the beam when the load is applied. Although the mixture employed reacts exothermically, it does not exceed the maximum temperature level above which the mechanical properties of the constituent material of the beam would be affected. In addition, the strength of the mixture is such that it is able to withstand the compression stresses that are generated during the test.}, year = {2017} }
TY - JOUR T1 - Obtaining a Gypsum-Cement Blend, to Be Used as Filling, with Low Hardening Temperature AU - Gabriela Abad-Farfán AU - Tito Fernando Muñoz-Cuenca AU - Paúl Bolivar Torres-Jara AU - Efrén Vázquez-Silva Y1 - 2017/11/07 PY - 2017 N1 - https://doi.org/10.11648/j.am.20170606.12 DO - 10.11648/j.am.20170606.12 T2 - Advances in Materials JF - Advances in Materials JO - Advances in Materials SP - 115 EP - 121 PB - Science Publishing Group SN - 2327-252X UR - https://doi.org/10.11648/j.am.20170606.12 AB - When a beam, made of material whose properties would be affected at temperatures above 37°C and with irregular geometry at its ends, is subjected to a bending test; it is necessary to guarantee the stability of its support points to achieve success in the execution of the test. This paper presents a study on the properties of a particular composite material that is used as a filling for certain hollow supports with the aim to provide stability to the ends of the beam when the load is applied. Although the mixture employed reacts exothermically, it does not exceed the maximum temperature level above which the mechanical properties of the constituent material of the beam would be affected. In addition, the strength of the mixture is such that it is able to withstand the compression stresses that are generated during the test. VL - 6 IS - 6 ER -