| Peer-Reviewed

Thermally Stimulated Depolarization Currents and Thermal Sampling Technique of γ-Irradiated Gelatin and PVA Homopolymers and 50/50 (wt/wt %) Blend Sample

Received: 2 November 2014     Accepted: 26 November 2014     Published: 28 November 2014
Views:       Downloads:
Abstract

Thermally stimulated depolarization current (TSDC) and thermal sampling (TS) method were used to systematically characterize the α-relaxation process in gelatin and PVA homopolymers and their blend sample of 50/50 (wt/wt %) composition. In addition, γ-irradiation effect on TSDC spectra of samples under investigation was studied. Measurements of TSDC at different polarizing field strengths, polarization temperatures and times made it possible to obtain a complete picture of kinetic transitions, local modes of motion and space charge polarization in one heating cycle. On γ-irradiation, the change in shape, position and area of the α-relaxation peak of the samples were attributed to the variation of distribution function of associated relaxation times. The thermal sampling procedure was applied to decompose the complex relaxations into their narrowly distributed components. The molecular parameters such as activation energy (Ea) and pre-exponential factor (τo) for TS processes have been estimated. A linear relationship between the activation energy and logarithm of pre-exponential factor confirms the existence of a compensation behavior. The compensation temperature Tc and compensation time τc for the present samples have been determined.

Published in European Journal of Biophysics (Volume 2, Issue 5)
DOI 10.11648/j.ejb.20140205.12
Page(s) 61-71
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2014. Published by Science Publishing Group

Keywords

Gelatin/PVA, Thermal Stimulated Depolarization Current, Thermal Sampling Process, Relaxation Processes

References
[1] J. Vanderschueren, J. Gasiot, Field-induced thermally stimulated currents. In: P Brauenlich, editor. Thermally stimulated currents in solids. Topics in applied physics. Springer: Berlin, (1979) P. 135.
[2] E. Dantras, J. Dandurand, C. Lacabann, A. Caminade, J. Majoral, Macromolecules, 37 (2004) 2812.
[3] F. H. Abd El-kader, A. M. Shehap, M. S. Abo-Ellil, K. H. Mahmoud, J. Appl. Polym. Sci., 95 (2005) 1342.
[4] V. M. Gun’ko et al, Adv. Colloid Interface Sci., 131 (2007) 1.
[5] H. C. Cheng, Y. W. Fang, F. M. Ching, T. L. Wei, D. H. Ching, International Journal of Biological Macromolecules, 43 (1) (2008) 37.
[6] S. U. Haq, S. H. Jayaram, E. A. Cherney, G. G. Raju, Journal of Electrostatics, 67 (2009) 12.
[7] S. H. Yoon, J. S. Park, S. H. Kim, D. Y. Kim. Appl. Phys. Lett. 103, 042901 (2013); doi: 10.1063/1.4816380.
[8] S. H. Yoon, S. H. Kim, D. Y. Kim. J. Appl. Phys. 114, 074102 (2013); doi: 10.1063/1.4818947
[9] L. L. Hench, E. C. Ethridge, Biomaterials. Academic press, NewYork, 1982.
[10] A. E. Bell, Gel structure and food quality. London: Elsevier Applied Science, (1989) P. 251.
[11] M. Bendszus, R. Klein, R. Burger, M. M. Warmuth, E. Hofmann, L. Solymosi, Am. J. Neuroradiol, 21 (2) (2000) 255.
[12] C. H. Cholakis, W. Zingg, M. V. Sefton, J. Biomed. Mater. Res., 23 (1989) 417.
[13] S. Horiike, S. Matsuzawa, J. Appl. Polym. Sci., 58 (1995) 1335.
[14] A. F. Basha, H. A. Abdel samed, M. Amin, Egypt J. Phys., 16 (2) (1985) 299.
[15] J. V. Turnhout, Topics in applied physics. G. M. Sessler, editor. Springer-Verlag: Berlin, (1989).
[16] G. M. Sessler, Electrets. Springer-Verlag: Berlin, Heidelberg, N.Y., (1980).
[17] J. V. Turnhout, Thermally stimulated discharge of polymer electrets. Elsevier, Amsterdam, (1975).
[18] F. Mano, N. T. Correla, J. J. M. Ramos, A. C. Fernanades, J. Polym. Sci. Polym. Phys. 33 (1995) 269.
[19] R. Sharma, L. V. Sud, J. Phys. D: Appl. Phys., 14 (1981) 1671.
[20] F. H. Abd El-kader, G. Attia, S. S. Ibrahim, J. Appl. Polym. Sci., 50 (1993) 1281.
[21] H. S. Ragab, M. S. Abo El-llil, A. Shehab, F. H. Abd El-kader, J. Appl. Polym. Sci., 87 (2003) 1748.
[22] V. K. Jain, C. L. Gupta, R. K. Jain, R. C. Tyagi, Thin Solid Films, 48 (1978) 175.
[23] P. K. C. Pillai, B. K. Gupta, M. Goel, J. Polym. Sci. Part B: Polym. Phys., 19 (1981) 1461.
[24] W. K. Sakamoto, S. Kagesawa, D. H. Kanda, D. K. Das-cupta, J. Matter. Sci., 33 (1998) 3325.
[25] G. Teyssedra, C. Lacabanne, Polymer, 36 (1995) 3641.
[26] P. Colomer, S. Montserrat, J. Belvona, J. Mat. Sci., 33 (1998) 1921.
[27] S. B. Sawarkar, V. S. Deogaonkar, S. V. Pakade, S. P. Yawale, Indian J. Pure and applied phys., 35 (1997) 281.
[28] M. Topic, K. A. Mogus-Milon, Z. Katovic, Polymer, 28 (1987) 33.
[29] M. Mudarra, A. Joumba, J. Belana, A. Tou, Polymer, 40 (1999) 6977.
[30] A. C. Lilly, R. M. Henderson, P. S. Sharp, J. Appl. Phys., 41 (1970) 2001.
[31] M. M. Perlman, J. Appl. Phys., 42 (1971) 2645.
[32] N. G. McCrum, B. E. Read, G. Williams, An elastic and dielectric effects in polymeric solids. J. Wiley. New York, (1967).
[33] P. Huo, P. Cebe, J. Polym. Sci. part B: Polym. Phys., 30 (1992) 239.
[34] P. Pillai, P. Nair, R. Nath, Polymer, 17 (1976) 921.
[35] T. W. Wilson, R. E. Fornes, R. D. Gilbert, T. D. Memory, J. Polym. Sci. B: Polym. Phys., 26 (1988) 2029.
[36] S. T. Takashima, Dielectric properties of proteins. In: Physical principle and techniques of protein chemistry part A. J. Leach, editor. Academic press. Ch. 6, (1969).
[37] W. W. Parkinson, Encyclopedia of polymer science technique. N. M. Bikals, & N. G. Gaylord, editors. John Wiley and Sons Inc. New York, (1969).
[38] J. V. Turnhout, Electrets. Springer-Verlag, Berlin, (1980).
[39] A. Nogales, B. B. Sauer, J. Polym. Sci. B: Polym. Phys., 36 (1998) 913.
[40] B. B. Sauer, N. V. Dipaolo, P. Avakian, W. G. Kampert, H. W. Starkweather, J. Polym. Sci. part B: Polym. Phys., 31 (12) (1993) 1851.
[41] M. D. Migahed, M. T. Ahmed, A. E. Kotp, M. El-Henawy J. Appl. Phys., 78 (8) (1995) 5079.
[42] B. B. Sauer, P. Avakin, H. W. Starkweather, B. S. Hsiao, Macromolecules, 23 (1990) 5119.
[43] B. B. Sauer, B. S. Hsiao, J. Polym. Sci. part B: Polym. Phys., 31 (8) (1993) 917.
[44] C. Bucci, R. Fieshi, G. Guidi, Phys. Rev., 148 (1966) 816.
[45] J. J. Del Val, A. Alegria, J. Colmenero, C. Lacabanne, J. Appl. Phys., 59 (11) (1986) 3829.
[46] M. Mudarra, J. Belana, J. C. Canadas, J. A. Diego, J. Polym. Sci. Part B: Polym. Phys., 36 (11) (1998) 1971.
[47] G. L. L. Ushcheikin, Electric properties of polymers, investigation methods, Moscow, Klimiya, (1988).
[48] R. J. J. Moura, J. F. Mano, B. B. Sauer, Polymer, 38 (1997) 1081.
[49] A. Bernes, R. F. Boyer, D. Chatain, C. Lacabanne, J. P. Ibar, Amorphous state of polymer. S. E. Keinath, editor. Plenum Press. New York, (1987).
[50] J. P. Ibar, Polym. Eng. Sci., 31(20) (1991) 1467.
Cite This Article
  • APA Style

    F. H. Abd El-kader, S. A. Gaffar, A. F. Basha, S. I. Bannan, M. F. H. Abd El-kader. (2014). Thermally Stimulated Depolarization Currents and Thermal Sampling Technique of γ-Irradiated Gelatin and PVA Homopolymers and 50/50 (wt/wt %) Blend Sample. European Journal of Biophysics, 2(5), 61-71. https://doi.org/10.11648/j.ejb.20140205.12

    Copy | Download

    ACS Style

    F. H. Abd El-kader; S. A. Gaffar; A. F. Basha; S. I. Bannan; M. F. H. Abd El-kader. Thermally Stimulated Depolarization Currents and Thermal Sampling Technique of γ-Irradiated Gelatin and PVA Homopolymers and 50/50 (wt/wt %) Blend Sample. Eur. J. Biophys. 2014, 2(5), 61-71. doi: 10.11648/j.ejb.20140205.12

    Copy | Download

    AMA Style

    F. H. Abd El-kader, S. A. Gaffar, A. F. Basha, S. I. Bannan, M. F. H. Abd El-kader. Thermally Stimulated Depolarization Currents and Thermal Sampling Technique of γ-Irradiated Gelatin and PVA Homopolymers and 50/50 (wt/wt %) Blend Sample. Eur J Biophys. 2014;2(5):61-71. doi: 10.11648/j.ejb.20140205.12

    Copy | Download

  • @article{10.11648/j.ejb.20140205.12,
      author = {F. H. Abd El-kader and S. A. Gaffar and A. F. Basha and S. I. Bannan and M. F. H. Abd El-kader},
      title = {Thermally Stimulated Depolarization Currents and Thermal Sampling Technique of γ-Irradiated Gelatin and PVA Homopolymers and 50/50 (wt/wt %) Blend Sample},
      journal = {European Journal of Biophysics},
      volume = {2},
      number = {5},
      pages = {61-71},
      doi = {10.11648/j.ejb.20140205.12},
      url = {https://doi.org/10.11648/j.ejb.20140205.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ejb.20140205.12},
      abstract = {Thermally stimulated depolarization current (TSDC) and thermal sampling (TS) method were used to systematically characterize the α-relaxation process in gelatin and PVA homopolymers and their blend sample of 50/50 (wt/wt %) composition. In addition, γ-irradiation effect on TSDC spectra of samples under investigation was studied. Measurements of TSDC at different polarizing field strengths, polarization temperatures and times made it possible to obtain a complete picture of kinetic transitions, local modes of motion and space charge polarization in one heating cycle. On γ-irradiation, the change in shape, position and area of the α-relaxation peak of the samples were attributed to the variation of distribution function of associated relaxation times. The thermal sampling procedure was applied to decompose the complex relaxations into their narrowly distributed components. The molecular parameters such as activation energy (Ea) and pre-exponential factor (τo) for TS processes have been estimated. A linear relationship between the activation energy and logarithm of pre-exponential factor confirms the existence of a compensation behavior. The compensation temperature Tc and compensation time τc for the present samples have been determined.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Thermally Stimulated Depolarization Currents and Thermal Sampling Technique of γ-Irradiated Gelatin and PVA Homopolymers and 50/50 (wt/wt %) Blend Sample
    AU  - F. H. Abd El-kader
    AU  - S. A. Gaffar
    AU  - A. F. Basha
    AU  - S. I. Bannan
    AU  - M. F. H. Abd El-kader
    Y1  - 2014/11/28
    PY  - 2014
    N1  - https://doi.org/10.11648/j.ejb.20140205.12
    DO  - 10.11648/j.ejb.20140205.12
    T2  - European Journal of Biophysics
    JF  - European Journal of Biophysics
    JO  - European Journal of Biophysics
    SP  - 61
    EP  - 71
    PB  - Science Publishing Group
    SN  - 2329-1737
    UR  - https://doi.org/10.11648/j.ejb.20140205.12
    AB  - Thermally stimulated depolarization current (TSDC) and thermal sampling (TS) method were used to systematically characterize the α-relaxation process in gelatin and PVA homopolymers and their blend sample of 50/50 (wt/wt %) composition. In addition, γ-irradiation effect on TSDC spectra of samples under investigation was studied. Measurements of TSDC at different polarizing field strengths, polarization temperatures and times made it possible to obtain a complete picture of kinetic transitions, local modes of motion and space charge polarization in one heating cycle. On γ-irradiation, the change in shape, position and area of the α-relaxation peak of the samples were attributed to the variation of distribution function of associated relaxation times. The thermal sampling procedure was applied to decompose the complex relaxations into their narrowly distributed components. The molecular parameters such as activation energy (Ea) and pre-exponential factor (τo) for TS processes have been estimated. A linear relationship between the activation energy and logarithm of pre-exponential factor confirms the existence of a compensation behavior. The compensation temperature Tc and compensation time τc for the present samples have been determined.
    VL  - 2
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Physics Department, Faculty of Science, Cairo University, Giza, Egypt

  • Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt

  • Physics Department, Faculty of Science, Cairo University, Giza, Egypt

  • Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt

  • Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt

  • Sections