| Peer-Reviewed

Well Behaved Charge Analogues of Wyman-Adler Exact Solution for a Self-Bound Star

Received: 25 July 2014     Accepted: 9 August 2014     Published: 20 August 2014
Views:       Downloads:
Abstract

The exact analytical Wyman-Adler’s relativistic solution describing the interior of a charged spherical strange star candidate is found under the assumption and existence of two parameters K and m. The interior self-bound star matter, pressure, energy density and the adiabatic sound speed are represented in terms of simple algebraic function. The analytic solution depicts a unique static charged configuration of quark matter with radius R~9 km and total mass M~2.5M¬¬⊙. And try to investigate the velocity of sound approximately 1/√3 which is similar to the attitude of SQM (Strange Quark matter). Based on analytic model in the recent work, the applicable values of physical quantities have been calculated by accepting the estimated masses and radii of some well-known strange star candidates like PSR J1903+327, Her X-1, Cen X-3, EXO 1785-248. The equation of state of the charge matter distribution may play a major role in the study of the interior structure of highly compact charge stellar object in astrophysical study.

Published in International Journal of Astrophysics and Space Science (Volume 2, Issue 3)
DOI 10.11648/j.ijass.20140203.12
Page(s) 46-55
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2014. Published by Science Publishing Group

Keywords

Exact Solution, Einstein-Maxwell, Reissner–Nordström, Relativistic Astrophysics, Compact Star, Equation of State

References
[1] Pant, N., Rajasekhara, S.: Variety of well-behaved parametric classes of relativistic charged fluid spheres in general relativity. Astrophys. Space Sci. 333, 161-168 (2011). Doi:10.1007/s10509-011-0607-z
[2] Nduka, A.: Charged fluid sphere in general relativity, Gen. Relativ. Gravit. 7 (1976) 493―499, doi:10.1007/BF00766408
[3] Nduka, A.: Static solutions of Einstein’s field equations for charged spheres of fluid, Acta Phys. Pol. B 9 (1978) 596―571.
[4] Mehra, A. L., Bohra, B. L.: Gen. Relativ. Gravit. 11, 333–336 (1979). doi:10.1007/BF00759275
[5] Pant, N., Faruqi, S.: Relativistic modelling of a superdense star containing a charged perfect fluid, Gravit. Cosmol. 18 (2012) 204―210, DOI:10.1134/S0202289312030073
[6] Pant, N., Mehta, R. N., Tewari, B. C., Astrophys. Space Sci. 327, 279 (2010).
[7] Pant, N., Tewari, B. C., Astroph. Space Sci. 331, 645 (2010).
[8] Pinheiro, G. and Chan, R., Gen. Rel. Grav. 40, 2149 (2008).
[9] Bordbar, G H., Bahri, H., Kayanikhoo, F.: Calculation of the Structure Properties of a Strange Quark Star in the Presence of Strong Magnetic Field Using a Density Dependent Bag Constant, Research in Astron. Astrophys. 12 (2012) 1280
[10] Fatema, S., Murad, M. H.: An Exact Family of Einstein – Maxwell Wyman – Adler Solution in General Relativity, Int J Theor Phys, doi: 10.1007/s10773-013-1538-y (2013).
[11] Schmitt, A.: Dense Matter in Compact Stars: A Pedagogical Introduction. Lecture Notes in Physics, vol. 811. Springer, Berlin (2010)
[12] Camenzind, M.: Compact Objects in Astrophysics White Dwarfts, Neutron Stars and black Holes. Astrophysics and Space Science Library. Springer, Berlin (2007)
[13] Ghosh, P.: Rotation and Accretion Powered Pulsars. World Scientific Series in Astronomy and Astrophysics, vol. 10. World Scientific, Singapore (2010)
[14] Farhi, E., Olinto, A., 1986, Astrophys. J. 310, 261
[15] Shapiro, S., Tenkolsky, S., 1983, Black Holes, White Dwarfs, and Neutron Stars, Wiley.
[16] Rahman, A H M., Murad, M H.: Some electrically charged relativistic stellar models in general relativity, Astrophys Space Sci. doi: 10.1007/s10509-014-1823-0 (2014)
[17] Weber, F., et al.: In: van Leeuwen, J. (ed.) Neutron Stars and Pulsars: Challenges and Opportunities After 80 Years. Proceedings IAU Symposium, vol. 291, pp. 61–66 (2012). doi: 10.1017/S1743921312023174
[18] Alcock, C., Farhi, E., Olinto, A.: Strange stars. Astrophys. J. 310, 261 (1986). doi:10.1086/164679
[19] Usov, V.V.: Phys. Rev. D, Part. Fields 70, 067301 (2004). doi:10.1103/PhysRevD.70.067301
[20] Usov, V.V., et al.: Astrophys. J. 620, 915 (2005). doi:10.1086/427074
[21] Negreiros, R. P., et al.: Phys. Rev. D 82, 103010 (2010). doi:10.1103/PhysRevD.82.103010
[22] Ray, S., et al.: Phys. Rev. D 68, 084004 (2003). doi:10.1103/PhysRevD.68.084004
[23] Malheiro, M., et al.: Int. J. Mod. Phys. D 13, 1375 (2004). doi:10.1142/S0218271804005560
[24] Weber, F., et al.: Int. J. Mod. Phys. E 16, 1165 (2007). doi:10.1142/S0218301307006599
[25] Weber, F., et al.: Neutron star interiors and the equation of state of superdense matter. In: Becker, W. (ed.) Neutron Stars and Pulsars. Astrophysics and Space Science Library, vol. 357, pp. 213–245. Springer, Berlin (2009)
[26] Weber, F., et al.: Int. J. Mod. Phys. D 19, 1427 (2010). doi:10.1142/S0218271810017329
[27] Negreiros, R. P., et al. Phys. Rev. D 80, 083006 (2009). doi:10.1103/PhysRevD.80.083006
[28] Jaikumar, P., Reddy, S., Steiner, A. W.:Phys. Rev. Lett. 96 (2006) 041101
[29] Patel, L. K., Tikekar, R., Sabu, M.C.: Gen. Relativ. Gravit. 29, 489 (1997). doi:10.1023/A:1018886816863
[30] Gupta, Y. K., Maurya, S.K.: Astrophys. Space Sci. 332, 155 (2011). doi:10.1007/s10509-010-0503-y
[31] Murad, H. M., Fatema, S.: Int. J. Theor. Phys. (2013). doi:10.1007/s10773-013-1752-7
[32] Fatema, S., Murad, H.M.: Int. J. Theor. Phys. 52, 2508 (2013). doi:10.1007/s10773-013-1538-y
[33] Buchdahl, H. A.: Regular general relativistic charged fluid spheres. Acta Phys. Pol. B 10, 673–685 (1979)
[34] Rhoades, C.E., Ruffini, R.: Maximum mass of a neutron star. Phys. Rev. Lett. 32, 324–327 (1974). doi:10.1103/PhysRevLett.32.324
[35] Hartle, J. B.: Bounds on the mass and moment of inertia non-rotating neutron stars. Phys. Rep. 46, 201–247 (1978). doi:10.1016/0370-1573(78)90140-0
[36] Hegyi, D., Lee, T.-S. H., Cohen, J.M.: The maximum mass of non-rotating neutron stars. Astrophys. J. 201, 462–466 (1975). doi:10.1086/153908
[37] Mak, M. K., Harko, T.: Quark stars admitting a one-parameter group of conformal motions. Int. J. Mod. Phys. D 13, 149–156 (2004). doi:10.1142/S0218271804004451
[38] Chattopadhyay, P. K., Deb, R., Paul, B. C.: Relativistic solution for a class of static compact charged star in pseudo-spheroidal spacetime. Int. J. Mod. Phys. D 21, 1250071 (2012). doi:10.1142/S021827181250071X
[39] Böhmer, C. G., Harko, T.: Minimum mass radius ratio for charged gravitational objects. Gen. Relativ. Gravit. 39, 757–775 (2007). doi:10.1007/s10714-007-0417-3
[40] Buchdahl, H. A.: General relativistic fluid spheres. Phys. Rev. 116, 1027–1034 (1959). doi:10.1103/PhysRev.H6.1027
[41] Buchdahl, H. A.: Regular general relativistic charged fluid spheres. Acta Phys. Pol. B 10, 673–685 (1979)
[42] Tikekar, R.: Spherical charged fluid distributions in general relativity. J. Math. Phys. 25, 1481–1483 (1984). doi:10.1063/1.526318
[43] Tolman, R. C.: Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939). doi:10.1103/PhysRev.55.364
[44] Durgapal, M. C.: A class of new exact solutions in general relativity. J. Phys. A, Math. Gen. 15, 2637–2644 (1982). doi:10.1088/0305-4470/15/8/039
[45] Lake, K.: All static spherically symmetric perfect-fluid solutions of Einstein’s equations. Phys. Rev. D 67, 104015 (2003). doi:10.1103/PhysRevD.67.104015
[46] Ishak, M., et al.: Phys. Rev. D 64, 024005 (2001). doi:10.1103/PhysRevD.64.024005
[47] Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 334, 145 (2011a). doi:10.1007/s10509-011-0705-y
[48] Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 334, 301 (2011b). doi:10.1007/s10509-011-0736-4
[49] Lattimer, J.M., Prakash, M.: Phys. Rev. Lett. 94, 111101 (2005). doi:10.1103/PhysRevLett.94.111101
[50] Li, X.-D., et al.: Phys. Rev. Lett. 83, 3776 (1999). doi:10.1103/PhysRevLett.83.3776
[51] Dey, M., et al.: Phys. Lett. B 438, 123 (1998). doi:10.1016/S0370-2693(98)00935-6
[52] Gangopadhyay, T., et al.: (2013). doi:10.1093/mnras/stt401
[53] Weber, F.: Prog. Part. Nucl. Phys. 54, 193 (2005). doi:10.1016/j.ppnp.2004.07.001
[54] Kiess, T.: Astrophys. Space Sci. 339, 329 (2012). doi:10.1007/s10509-012-1013-x
Cite This Article
  • APA Style

    A. H. M. Mahbubur Rahman, M. Rubayet Rahman, A. S. M. Mohiul Islam. (2014). Well Behaved Charge Analogues of Wyman-Adler Exact Solution for a Self-Bound Star. International Journal of Astrophysics and Space Science, 2(3), 46-55. https://doi.org/10.11648/j.ijass.20140203.12

    Copy | Download

    ACS Style

    A. H. M. Mahbubur Rahman; M. Rubayet Rahman; A. S. M. Mohiul Islam. Well Behaved Charge Analogues of Wyman-Adler Exact Solution for a Self-Bound Star. Int. J. Astrophys. Space Sci. 2014, 2(3), 46-55. doi: 10.11648/j.ijass.20140203.12

    Copy | Download

    AMA Style

    A. H. M. Mahbubur Rahman, M. Rubayet Rahman, A. S. M. Mohiul Islam. Well Behaved Charge Analogues of Wyman-Adler Exact Solution for a Self-Bound Star. Int J Astrophys Space Sci. 2014;2(3):46-55. doi: 10.11648/j.ijass.20140203.12

    Copy | Download

  • @article{10.11648/j.ijass.20140203.12,
      author = {A. H. M. Mahbubur Rahman and M. Rubayet Rahman and A. S. M. Mohiul Islam},
      title = {Well Behaved Charge Analogues of Wyman-Adler Exact Solution for a Self-Bound Star},
      journal = {International Journal of Astrophysics and Space Science},
      volume = {2},
      number = {3},
      pages = {46-55},
      doi = {10.11648/j.ijass.20140203.12},
      url = {https://doi.org/10.11648/j.ijass.20140203.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijass.20140203.12},
      abstract = {The exact analytical Wyman-Adler’s relativistic solution describing the interior of a charged spherical strange star candidate is found under the assumption and existence of two parameters K and m. The interior self-bound star matter, pressure, energy density and the adiabatic sound speed are represented in terms of simple algebraic function. The analytic solution depicts a unique static charged configuration of quark matter with radius R~9 km and total mass M~2.5M¬¬⊙. And try to investigate the velocity of sound approximately 1/√3 which is similar to the attitude of SQM (Strange Quark matter). Based on analytic model in the recent work, the applicable values of physical quantities have been calculated by accepting the estimated masses and radii of some well-known strange star candidates like PSR J1903+327, Her X-1, Cen X-3, EXO 1785-248. The equation of state of the charge matter distribution may play a major role in the study of the interior structure of highly compact charge stellar object in astrophysical study.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Well Behaved Charge Analogues of Wyman-Adler Exact Solution for a Self-Bound Star
    AU  - A. H. M. Mahbubur Rahman
    AU  - M. Rubayet Rahman
    AU  - A. S. M. Mohiul Islam
    Y1  - 2014/08/20
    PY  - 2014
    N1  - https://doi.org/10.11648/j.ijass.20140203.12
    DO  - 10.11648/j.ijass.20140203.12
    T2  - International Journal of Astrophysics and Space Science
    JF  - International Journal of Astrophysics and Space Science
    JO  - International Journal of Astrophysics and Space Science
    SP  - 46
    EP  - 55
    PB  - Science Publishing Group
    SN  - 2376-7022
    UR  - https://doi.org/10.11648/j.ijass.20140203.12
    AB  - The exact analytical Wyman-Adler’s relativistic solution describing the interior of a charged spherical strange star candidate is found under the assumption and existence of two parameters K and m. The interior self-bound star matter, pressure, energy density and the adiabatic sound speed are represented in terms of simple algebraic function. The analytic solution depicts a unique static charged configuration of quark matter with radius R~9 km and total mass M~2.5M¬¬⊙. And try to investigate the velocity of sound approximately 1/√3 which is similar to the attitude of SQM (Strange Quark matter). Based on analytic model in the recent work, the applicable values of physical quantities have been calculated by accepting the estimated masses and radii of some well-known strange star candidates like PSR J1903+327, Her X-1, Cen X-3, EXO 1785-248. The equation of state of the charge matter distribution may play a major role in the study of the interior structure of highly compact charge stellar object in astrophysical study.
    VL  - 2
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Civil Engineering, Southern University Bangladesh, Bangladesh

  • Faculty of Math and Science, Asian University for Women, Bangladesh

  • Department of Mathematics, University of Chittagong, Bangladesh

  • Sections