De Broglie's neutrino relations have been derived in this paper in the spirit of tachyon neutrino theory. The analysis of the physical characteristics of the neutrino as the tachyon particle has been done and a formula derived for the oscillation length. By analyzing phase angle of the plane wave, we came to the conclusion that the oscillations of neutrinos could be performed by speeds greater than the speed of light. Starting off from the application of Heisenberg's uncertainty relation in the micro-world , the postulate of neutrino confinement was introduced in the macroscopic area defined by the neutrino oscillation length. It is shown that the neutrino mass which belongs to the tachyon four-dimension space-time and the neutrino mass of the four-dimension space-time of the theory of relativity are not mutually equal by value, but the corresponding energy and momentum are unchanging.
Published in |
International Journal of Astrophysics and Space Science (Volume 2, Issue 6-1)
This article belongs to the Special Issue Quantum Vacuum, Fundamental Arena of the Universe: Models, Applications and Perspectives |
DOI | 10.11648/j.ijass.s.2014020601.13 |
Page(s) | 18-23 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Ordinary Neutrino, Tachyon, Neutrino Oscillations, Oscillation Length
[1] | E. Kh. Akhmedov and A. Yu.Smirnov, „Paradoxes of neutrino oscillations“, arxiv:hep-ph/0905.1903 (2009). |
[2] | Y. Foli and Q. Y. Liu, “A paradox on quantum field theory of neutrino mixing and oscillations”, JHEP 10 (2006), 048, arxiv:hep-ph/0604069, |
[3] | Z. B. Todorovic, „A possible view of experimental evidences of the tachyonic nature of neutrino“, Sc.BUP Timisoara, Tom 57(71),2, M-F, Pages 99-110 (2012) |
[4] | Z.. B. Todorovic, “Theory of tachyonic nature of neutrino”, Fund. Journal of Modern Physics, volume 6, Issuess 1-2, 2013, pages 17-47. |
[5] | Y. Grossman and H. Lipkin, “Flavor oscillation from a spatially localized source: A simple general treatment”, Phys.Rev.D55 (1997), 2760-2767, arxiv:hep-ph/9607201, |
[6] | M. Blasam and G. Vitiello, “Remarks on the neutrino oscillation formula,” arxiv:hep-ph/9907382v2 (1999) |
[7] | S. M.Bilenky, C. Giunti, and W. Grimus, “Phenomenology of neutrino oscillations”, arhiv:hep-ph/9812360 (1999). |
[8] | Y. Takenchi, Y. Tazaki, S. Y. Tsai, and T. Yamazaki, „How do neutrino propagate? Wave packet treatment of neutrino oscillation, energy/momentum/velocity prescriptions of neutrino oscillations”, arxiv.:hep-ph/9809558 |
[9] | S. De Leo, G. Ducati, and P. Rotelli, „Remarks upon the mass oscillation formula“, Modern Physics Letters, A 15, 2057-2068 (2000), arxiv.org:hep-ph/9906460, |
[10] | M. C. Gonsales-Garcia, Y. Nir, “Neutrino masses and mixing: evidence and implications”, CERN-TH/2002-21, arxiv: hep-ph/0202058 (2003). |
[11] | G. L .Fogli, E. Lisi, A. Marrone, D. Monatanino, A. Palazzo, and A. M.Rotunno, “Global of neutrino masses, mixing and phases: entering the era of leptonig CP violation searches”, arxiv: hep-ph/1205.5254 (2012). |
[12] | C. Gianti, „Flavor neutrinos status“, arxiv:hep-ph/0402217 (2004). |
[13] | C. Gianti, „Theory of neutrinos oscillations“, arxiv:hep-ph/0409230v1 (2004). |
[14] | M. Blasone P. P. Pacho, and H. W. C. Tseng, “Neutrino oscillation from relativistic flavor current”, arxiv:hep-ph/0212402v43 (2004) |
[15] | L. B. Okum and I. S. Tsukerman, “Comment on equal velocity assumptions for neutrino oscillation”, arxiv:hep-ph/0007262 |
[16] | H. Lipkin, “Stodolsky's theorem and neutrino oscillations phase-for pedestrians: Simple answers to confusing questions”, Phys. Lett.B 042 (2006). |
[17] | H. J. Lipkin, “Quantum theory of neutrino oscillations for pedestrians-simple answers to confusing questions”, arxiv:hep-ph/0505141v4 (2006).. |
[18] | P. Hernandez, „Neutrino physics“, arxiv: 1010.4131 (2010) . |
[19] | L. Stodolsky, „The unnecesary wave packet“, Phys.Rev.D58 (1998), 0360035, hep-ph/980238 |
[20] | C. Ginuti, “Neutrino wave packets in quantum field theory”, arxiv.org:hep-ph/02015014, |
[21] | S. Yang and Bo. Q. Ma, “Lorentz violation in threee family neutrinos oscillations”, In.J.Mod.Phys..1A (2009), arxiv: hep-ph/0910.0897v1 (2009). |
[22] | D. V. Forero, M. Tortola, and J. M. F. Valle, “Global status of neutrno oscillation parameters after 2012”, arxiv: 1205.4018 (2012). |
[23] | C. N. Leung, “Neutrino test and special relativity”, arxiv:hep-ph/0002973v2 (2000). |
[24] | P. H. Chaukowski, and S. Pokorori, “Quantum corrections to neutrino masses and mixing angles”, arxiv:hep-ph/0110249 (2001). |
[25] | Z. B. Todorovic, “Interpretation of experimentally measured neutrino velocities based on tachyon theory of neutrino”, Fund. Journal of Modern Physics, volume 7, Issues 1, 2014, pages 9-33. |
[26] | Z. B. Todorovic, „Theory of the origin of the electron“, Sc.BUP Timisoara, Tom 50(65),2, M-F, Pages 102-110 (2006). |
[27] | R. Davis Jr., D. S. Harmer, and K. C. Hoffman (1968). "Search for Neutrinos from the Sun". Physical Review Letters 20: 1205. Bibcode: 1968PhRvL...20.1205D. doi:10.1103/PhysRevLett.20.1205. |
[28] | V. Gribov and B. Pontecorvo (1969). "Neutrino astronomy and lepton charge". Physics Letters B 28: 493. Bibcode: 1969PhLB...28...493G. doi: 10.1016/0370-2693(69)90525-5. |
[29] | J. Schechter, J.W.F. Valle (1980). "Neutrino Masses in SU (2) x U (1) Theories". Physical Review D 22: 2227. Bibcode:1980PhRvD...22.2227S. doi:10.1103/PhysRevD.22.2227. |
[30] | S. Eidelman et al. (2004). "Particle Data Group - The Review of Particle Physics". Physics Letters B 592 (1). arxiv: astro-ph/0406663. Bibcode: 2004PhLB...592....1P. doi:10.1016/j.physletb.2004.06.001. Chapter 15: Neutrino mass, mixing, and flavor change Revised September 2005. |
[31] | M. Honda; Y. Kao; N. Okamura; T. Takeuchi (2006). "A Simple Parameterization of Matter Effects on Neutrino Oscillations". Arxiv: hep-ph/0602115 hep-ph. |
[32] | Daya Bay Collaboration (2012). "Observation of electron-antineutrino disappearance at Daya Bay". Physical Review Letters 108 (17): 171803. arxiv: 1203.1669. Bibcode: 2012PhRvL.108q1803A. doi:10.1103/PhysRevLett.108.171803. |
[33] | K. Nakamura et al. (2010). "Review of Particle Physics". Journal of Physics G37: 1. Bibcode: 2010JPhG...37g5021N. doi:10.1088/0954-3899/37/7a/075021. |
[34] | J. W. F. Valle (2006). "Neutrino physics overview". Journal of Physics: Conference Series 53 (1): 473. arxiv: hep-ph/0608101. Bibcode: 2006JPhCS...53...473V. doi:10.1088/1742-6596/53/1/031. |
[35] | R.N. Mohapatra and J. W. F. Valle (1986). "Neutrino Mass and Baryon Number Nonconservation in Superstring Models". Physical Review D 34 (5): 1642. Bibcode: 1986PhRvD...34.1642M. doi:10.1103/PhysRevD.34.1642. |
[36] | A. Kostelecký, S. Stuart (1994). "Nonlinear neutrino oscillations in the expanding universe". Phys. Rev. D 49: 1740–1757. Bibcode: 1994PhRvD...49.1740K. doi:10.1103/PhysRevD.49.1740. |
[37] | Gonzalez-Garcia; Nir (2002). "Neutrino Masses and Mixing: Evidence and Implications". Reviews of Modern Physics 75 (2): 345–402. arxiv: hep-ph/0202058. Bibcode: 2003RvMP...75..345G. doi:10.1103/RevModPhys.75.345. |
[38] | Maltoni; Schwetz; Tortola; Valle (2004). "Status of global fits to neutrino oscillations". New Journal of Physics 6: 122. arxiv: hep-ph/0405172. Bibcode: 2004NJPh....6...122M. doi:10.1088/1367-2630/6/1/122.Forero; |
[39] | Tortola; Valle (2012). "Global status of neutrino oscillation parameters after Neutrino-2012". Physical Review D 86: 073012. arxiv: 1205.4018. Bibcode: 2012PhRvD...86g3012F. doi:10.1103/PhysRevD.86.073012. |
[40] | H. K. Jassal, „Tachyon field in cosmology“, PRAMANA-Journal of physics, vol.62, N8.3, 2004, pp.757-760. |
[41] | H. Farajoilahi, A.Paranpak, and G.F.Fadakar, „Interacting agegaraphi dark energy model in tachyon cosmology coupled to matter“, arxiv:physics. gen -ph/ 1206.5796v3 ,2012. |
[42] | F. C. W.Davies, „Tachyonic dark matter“, arxiv:astro-ph/0403048, 2014. |
[43] | Z. Kersestzes and L. A. Gergely,“ Combined cosmological tests of a bivalent tachyonic dark enegy scalar field model“, arxiv:astro-ph..CO/.1408.3736v1,2014. |
APA Style
Zoran B. Todorovic. (2015). Neutrino Oscillations Founded on Tachyon Theory of Neutrino. International Journal of Astrophysics and Space Science, 2(6-1), 18-23. https://doi.org/10.11648/j.ijass.s.2014020601.13
ACS Style
Zoran B. Todorovic. Neutrino Oscillations Founded on Tachyon Theory of Neutrino. Int. J. Astrophys. Space Sci. 2015, 2(6-1), 18-23. doi: 10.11648/j.ijass.s.2014020601.13
AMA Style
Zoran B. Todorovic. Neutrino Oscillations Founded on Tachyon Theory of Neutrino. Int J Astrophys Space Sci. 2015;2(6-1):18-23. doi: 10.11648/j.ijass.s.2014020601.13
@article{10.11648/j.ijass.s.2014020601.13, author = {Zoran B. Todorovic}, title = {Neutrino Oscillations Founded on Tachyon Theory of Neutrino}, journal = {International Journal of Astrophysics and Space Science}, volume = {2}, number = {6-1}, pages = {18-23}, doi = {10.11648/j.ijass.s.2014020601.13}, url = {https://doi.org/10.11648/j.ijass.s.2014020601.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijass.s.2014020601.13}, abstract = {De Broglie's neutrino relations have been derived in this paper in the spirit of tachyon neutrino theory. The analysis of the physical characteristics of the neutrino as the tachyon particle has been done and a formula derived for the oscillation length. By analyzing phase angle of the plane wave, we came to the conclusion that the oscillations of neutrinos could be performed by speeds greater than the speed of light. Starting off from the application of Heisenberg's uncertainty relation in the micro-world , the postulate of neutrino confinement was introduced in the macroscopic area defined by the neutrino oscillation length. It is shown that the neutrino mass which belongs to the tachyon four-dimension space-time and the neutrino mass of the four-dimension space-time of the theory of relativity are not mutually equal by value, but the corresponding energy and momentum are unchanging.}, year = {2015} }
TY - JOUR T1 - Neutrino Oscillations Founded on Tachyon Theory of Neutrino AU - Zoran B. Todorovic Y1 - 2015/01/27 PY - 2015 N1 - https://doi.org/10.11648/j.ijass.s.2014020601.13 DO - 10.11648/j.ijass.s.2014020601.13 T2 - International Journal of Astrophysics and Space Science JF - International Journal of Astrophysics and Space Science JO - International Journal of Astrophysics and Space Science SP - 18 EP - 23 PB - Science Publishing Group SN - 2376-7022 UR - https://doi.org/10.11648/j.ijass.s.2014020601.13 AB - De Broglie's neutrino relations have been derived in this paper in the spirit of tachyon neutrino theory. The analysis of the physical characteristics of the neutrino as the tachyon particle has been done and a formula derived for the oscillation length. By analyzing phase angle of the plane wave, we came to the conclusion that the oscillations of neutrinos could be performed by speeds greater than the speed of light. Starting off from the application of Heisenberg's uncertainty relation in the micro-world , the postulate of neutrino confinement was introduced in the macroscopic area defined by the neutrino oscillation length. It is shown that the neutrino mass which belongs to the tachyon four-dimension space-time and the neutrino mass of the four-dimension space-time of the theory of relativity are not mutually equal by value, but the corresponding energy and momentum are unchanging. VL - 2 IS - 6-1 ER -