Bifurcations of periodic orbits and chaos in the Brusselator chemical reaction with different shape of external periodic forces are studied numerically. The external periodic forces considered are sine wave, square-wave, rectified sine wave, symmetric saw-tooth wave, asymmetric saw-tooth wave and modulus of sine wave. Period doubling bifurcations, chaos, reverse period doubling bifurcations, quasiperiodic bifurcations are found to occur due to the applied forces. Parametric regimes where suppression of chaos occurs are predicted. Numerical investigations including bifurcation diagram, maximal Lyapunov exponent, Poincare map, Phase portrait and time series plot are used to detect chaos, quasiperiodic and periodic orbits.
Published in | International Journal of Computational and Theoretical Chemistry (Volume 3, Issue 3) |
DOI | 10.11648/j.ijctc.20150303.11 |
Page(s) | 19-27 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Brusselator, Various Periodic Forces, Bifurcations, Chaos, Quasiperiodic Orbit
[1] | R. J. Field and M. Burger, Oscillations and Travelling waves in Chemical Systems, Wiley- Interscience, New York, 1985. |
[2] | P. Gray and S.K. Scott, Chemical Oscillations, Instabilities: Nonlinear Chemical Kinetics, Oxford University Press, Oxford, 1900. |
[3] | S.K. Scott, Chemical Chaos, Oxford University Press, Oxford, 1991. |
[4] | S.K. Scott, Oscillations, Waves and Chaos in Chemical Kinetics, Oxford University Press, Oxford, 1994. |
[5] | E. Ott, Chaos in Dynamical Systems, Cambridge University Press, Cambridge, 1993. |
[6] | J. Shi, Front. Math. China, 43, 407 (2009). |
[7] | J. Wang, H. Sun, S.K. Scott and K. Showalter, Phys. Chem. Chem. Phy., 5, 5444 (2003). |
[8] | I.R. Epstein and K. Showalter, J. Phys. Chem., 100, 13132 (1996). |
[9] | J. Tyson, J. Chem. Phys., 58, 3919 (1973). |
[10] | R. Lefever and G. Nicolis, J. Theor. Biol., 30, 267 (1971). |
[11] | J.C. Roux, A. Russi, S. Bachelart and C. Vidal, Phys. Lett. A, 77, 391 (1980). |
[12] | R.H.. Simoyi, A. Wolf and H.L. Swinney, Phys. Rev. Lett., 49, 245 (1982). |
[13] | J. Turner, J.C. Roux, W.D. McCormick and H.L. Swnney, Phys. Lett. A, 85, 9 (1981). |
[14] | J. L. Hudson, M. Hart and J. Marinko, J. Chem. Phys., 71, 1601 (1979). |
[15] | R. A. Schmitz, K. R. Graziani and J.L. Hudson, J. Chem. Phys., 67, 3040 (1977). |
[16] | I.Yamazaki, K. okota, and R. Nakajima, Biochem. Biophys. Res. Commun., 21, 582 (1965). |
[17] | S. Nakamura, K. Yokota and I.Yamazaki, Nature, 222, 794 (1969). |
[18] | C.G. Steinmetz, T. Geest and R. Larter, J. Phys. Chem., 97, 5649 (1993). |
[19] | L.F. Olsen and H. Degn, Nature, 267, 177 (1977). |
[20] | T. Geest, C.G. Steinmetz, R. Larter and L.F. Olsen, J. Phys. Chem., 96, 5678 (1992). |
[21] | M.S. Samples, H.F. Hung and J. Ross, J. Phys. Chem., 96, 7338 (1992). |
[22] | J. Maselko and I.R. Epstein, J. Chem. Phys., 80, 3175 (1984). |
[23] | E. Wasserman, Chem. Eng. News, 69, 25 (1991). |
[24] | P. Ruoff, J. Phys. Chem., 96, 9104 (1992). |
[25] | J. Wang, P. G. Sorensen and F. Hynne, J. Phys. Chem., 98, 725 (1994). |
[26] | F.N. Albahadily and M. Schell, J. Phys. Chem., 88, 4312 (1988). |
[27] | M.R. Bassett and J.L. Hudson, Chem. Eng. Commun., 60, 145 (1987). |
[28] | M.R. Bassett and J.L. Hudson, J. Phys. Chem., 92, 6963 (1988). |
[29] | M.R. Bassett and J.L. Hudson, J. Phys. Chem., 93, 2731 (1989). |
[30] | M. Schell, F.N. Albahadily, J. Safar and Y. Xu, J. Phys. Chem., 93, 4806 (1989). |
[31] | F.N. Albahadily and M. Schell, J. Electroanal Chem., 308, 151 (1991). |
[32] | M.T.M. Koper and P. Gaspard, J. Phys. Chem., 95, 4945 (1991). |
[33] | M.T.M. Koper and P. Gaspard, J. Phys. Chem., 96, 7797 (1992). |
[34] | S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, 1990. |
[35] | M. Lakshmanan and S. Rajasekar, Nonlinear Dynamics, Integrability, Chaos and Patterns, Springer- Verlag, Berlin, 2003. |
[36] | R. Chacon, J. Math. Phys., 38, 1477 (1997). |
[37] | K. Konishi, Phys. Lett. A., 320, 200 (2003). |
[38] | Z.M. Ge and W.Y. Leu, Chaos, Soliton and Fractals, 20, 503 (2004). |
[39] | A.Y.T. Leung and L. Zengrong, Int. J. Bifur. and Chaos, 14, 1455 (2004). |
[40] | V.M. Gandhimathi, K.Murali and S.Rajasekar, Chaos, Soliton and Fractals, 30, 1034 (2006). |
[41] | V.M. Gandhimathi, S. Rajasekar and J. Kurths, Int. J. of Bifur. and Chaos, 18, 2073 (2008). |
[42] | V. Ravichandran, V. Chinnathambi and S. Rajasekar, Indian J. of Phys., 86(10), 907 (2012). |
[43] | V. Ravichandran, V. Chinnathambi and S. Rajasekar, Physica A, 376, 223 (2007). |
[44] | T. Ma and S. Wang, J. of Math. Phys., 52, 033501 (2011). |
[45] | M. Sun, Y. Tan and L. Chen, J. Math. Chem., 44, 637 (2008). |
[46] | J. C. Tzou, B .J. Matkowsky and V.A. Volpert, Appl. Math. Lett., 22, 1432 (2009). |
[47] | I. Prigogine and R. Lefever, J. Chem. Phys., 48, 1695 (1968). |
[48] | I. Bashkirtseva and L. Ryashko, Chaos, Solitons and Fractals, 26, 1437 (2005). |
[49] | A. Sanayei, Controlling Chaotic Forced Brusselator Chemical Reaction, Procedings of the World Congress in Engineering (WCE), Vol. III, June 30-July 2, 2010, London, UK. |
[50] | A. Wolf, J.B. Swift, H.L. Swinny and J.A. Vastano, Physica D, 16, 285 (1985). |
APA Style
Guruparan S., Ravindran Durai Nayagam B., Jeyakumari S., Chinnathambi V. (2015). Effect of Different Shape of Periodic Forces on Chaotic Oscillation in Brusselator Chemical System. International Journal of Computational and Theoretical Chemistry, 3(3), 19-27. https://doi.org/10.11648/j.ijctc.20150303.11
ACS Style
Guruparan S.; Ravindran Durai Nayagam B.; Jeyakumari S.; Chinnathambi V. Effect of Different Shape of Periodic Forces on Chaotic Oscillation in Brusselator Chemical System. Int. J. Comput. Theor. Chem. 2015, 3(3), 19-27. doi: 10.11648/j.ijctc.20150303.11
AMA Style
Guruparan S., Ravindran Durai Nayagam B., Jeyakumari S., Chinnathambi V. Effect of Different Shape of Periodic Forces on Chaotic Oscillation in Brusselator Chemical System. Int J Comput Theor Chem. 2015;3(3):19-27. doi: 10.11648/j.ijctc.20150303.11
@article{10.11648/j.ijctc.20150303.11, author = {Guruparan S. and Ravindran Durai Nayagam B. and Jeyakumari S. and Chinnathambi V.}, title = {Effect of Different Shape of Periodic Forces on Chaotic Oscillation in Brusselator Chemical System}, journal = {International Journal of Computational and Theoretical Chemistry}, volume = {3}, number = {3}, pages = {19-27}, doi = {10.11648/j.ijctc.20150303.11}, url = {https://doi.org/10.11648/j.ijctc.20150303.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijctc.20150303.11}, abstract = {Bifurcations of periodic orbits and chaos in the Brusselator chemical reaction with different shape of external periodic forces are studied numerically. The external periodic forces considered are sine wave, square-wave, rectified sine wave, symmetric saw-tooth wave, asymmetric saw-tooth wave and modulus of sine wave. Period doubling bifurcations, chaos, reverse period doubling bifurcations, quasiperiodic bifurcations are found to occur due to the applied forces. Parametric regimes where suppression of chaos occurs are predicted. Numerical investigations including bifurcation diagram, maximal Lyapunov exponent, Poincare map, Phase portrait and time series plot are used to detect chaos, quasiperiodic and periodic orbits.}, year = {2015} }
TY - JOUR T1 - Effect of Different Shape of Periodic Forces on Chaotic Oscillation in Brusselator Chemical System AU - Guruparan S. AU - Ravindran Durai Nayagam B. AU - Jeyakumari S. AU - Chinnathambi V. Y1 - 2015/06/23 PY - 2015 N1 - https://doi.org/10.11648/j.ijctc.20150303.11 DO - 10.11648/j.ijctc.20150303.11 T2 - International Journal of Computational and Theoretical Chemistry JF - International Journal of Computational and Theoretical Chemistry JO - International Journal of Computational and Theoretical Chemistry SP - 19 EP - 27 PB - Science Publishing Group SN - 2376-7308 UR - https://doi.org/10.11648/j.ijctc.20150303.11 AB - Bifurcations of periodic orbits and chaos in the Brusselator chemical reaction with different shape of external periodic forces are studied numerically. The external periodic forces considered are sine wave, square-wave, rectified sine wave, symmetric saw-tooth wave, asymmetric saw-tooth wave and modulus of sine wave. Period doubling bifurcations, chaos, reverse period doubling bifurcations, quasiperiodic bifurcations are found to occur due to the applied forces. Parametric regimes where suppression of chaos occurs are predicted. Numerical investigations including bifurcation diagram, maximal Lyapunov exponent, Poincare map, Phase portrait and time series plot are used to detect chaos, quasiperiodic and periodic orbits. VL - 3 IS - 3 ER -