| Peer-Reviewed

Theoretical Study of CH4 Adsorption and C-H Bond Activation of CH4 on Metal Ad-atom of M@M (111) (M=Ni, Pd, Pt, Cu, Ag, Au)

Received: 29 November 2016     Accepted: 8 December 2016     Published: 10 January 2017
Views:       Downloads:
Abstract

We have investigated the CH4 adsorption and the C-H bond breaking activation on the metal ad-atom of M@M (111) (M=Ni, Pd, Pt, Cu, Ag, Au) and M@M (111)/H (covered by hydrogen atoms) 3 and 1-layer surfaces (4-type surfaces) using spin-polarized Density Functional Theory (DFT). We find that the adsorption energies of methane are related to the d-band center of metal ad-atoms. In particular, the distances between CH4 and Ni, Pd, and Pt ad-atoms of 4-type surfaces are shortened and the adsorption energies of CH4 on metal ad-atoms are stronger than the perfect surfaces because the d-band center of metal ad-atoms are close to the Fermi level. Furthermore, we have investigated the activation barrier energies of C-H bond breaking of CH4 on Ni, Pt, and Ag ad-atoms of 4-type surfaces because Pt ad-atom exhibits stronger adsorption energy of CH4, Ag ad-atom exhibits weaker ones, and Ni utilizes for the steam reforming reaction. We find that Ni and Pt ad-atoms show lower activation barrier energies, and they are related to the CH4 adsorption energies as well as the d-band centers.

Published in International Journal of Computational and Theoretical Chemistry (Volume 4, Issue 3)
DOI 10.11648/j.ijctc.20160403.12
Page(s) 21-30
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Methane Adsorption, C-H Bond Breaking, Ad-atom, Density Functional Theory

References
[1] J. R. Rostrup-Nielsen, J. H. B. Hansen, J. Catal. 144, 38 (1993).
[2] M. C. J. Brandford, M. A. Vannice, Appl. Catal. A Gen. 142, 97 (1996).
[3] K. Tomoshige, Y. G. Chen, K. Fujimoto, J. Catal. 181, 91 (1999).
[4] K. Otsuka, S. Kobayashi, S. Takenaka, Appl. Catal. A Gen. 190, 261 (2000).
[5] A. Erdöhelyi, J. Cserényi, F. Solymosi, J. Catal. 141, 287 (1993)
[6] R. Takahashi, S. Sato, T. Sodesawa, M. Kato, S. Takenaka, S. Yoshida, J. Catal. 204, 259 (2001).
[7] O. Tokunaga, Y. Osada, S. Ogasawara, Fuel 68, 990 (1989).
[8] S. Tang, L. Li, J. Lin, H. C. Zeng, K. L. Tan, K. Li, J. Catal. 194, 424 (2000).
[9] A. Malaika, B. Krzyzynska, M. Kozlowski, Int. J. Hydrogen Energy 35, 7470 (2010).
[10] J. M. Ginsburg, J. Pina, T. E. Solh, H. I. de Lasa, Ind. Eng. Chem. Res. 44, 4846 (2005).
[11] J. R. Rostrup-Nielsen, Catal. Today 37, 225 (1997).
[12] V. C. H. Kroll, H. M. Swaan, C. Mirodatos, J. Catal. 161, 409 (1996).
[13] H. M. Swaan, V. C. H. Kroll, G. A. Martin, C. Mirodatos, Catal. Today 21, 571 (1994).
[14] H. F. Abbas, W. M. A. W. Daud, Int. J. Hydrogen Energy 35, 141 (2010).
[15] C. H. Bartholomew, Appl. Catal. A Gen. 212, 17 (2001).
[16] H. S. Bengaard, J. K. Nørskov, J. Sehested, B. S. Clausen, L. P. Nielsen, A. M. Molenbroek, and J. R. Rostrup-Nielsen, J. Catal. 209, 365 (2002).
[17] J. R. Rostrup-Nielsen, Springer, Berlin (1984) (editor: J. R. Anderson, M. Boudart).
[18] C. T. Rettner, H. E. Pfnur, and D. J. Auerbach, Phys. Rev. Lett. 54, 2716 (1985).
[19] C. T. Rettner, H. E. Pfnur, and D. J. Auerbach, J. Chem. Phys. 84, 4163 (1986).
[20] P. M. Holmblad, J. Wambach and I. Chorkendorff, J. Chem. Phys. 102, 8255 (1995).
[21] L. B. F. Juurlink, P. R. McCabe, R. R. Smith, C. L. DiCologero, and A. L. Utz, Phys. Rev. Lett. 83, 868 (1999).
[22] M. B. Lee, Q. Y. Yang, and S. T. Ceyer, J. Chem. Phys. 87, 2724 (1987).
[23] R. R. Smith, D. R. Killelea, D. F. DelSesto, and A. L. Utz, Science, 304, 992 (2004).
[24] R. Bisson, M. Sacchi, T. T. Dang, B. Yoder, P. Maroni, and R. D. Beck, J. Phys. Chem. A, 111, 12679 (2007).
[25] H. Yang and J. L. Whitten, J. Chem. Phys. 96, 5529 (1992).
[26] P. Kratzer, B. Hammer, and J. K. Nørskov, J. Chem. Phys. 105, 5595 (1996).
[27] S. Nave, A. K. Tiwari, and B. Jackson, J. Chem. Phys. 132, 054705 (2010).
[28] T. P. Beebe Jr., D. W. Goodman, B. D. Kay, and J. T. Yates Jr., J. Chem. Phys. 87, 2305 (1987).
[29] F. Abild-Pedersen, O. Lytken, J. Engbæk, G. Nielsen, I. Chorkendorff, and J. K. Nørskov, Surf. Sci. 590, 127 (2005).
[30] A. Kokaji, N. Bonini, S. de Gironcoli, C. Sbraccia, G. Fratesi, and S. Baroni, J. Am. Chem. Soc. 128, 12448 (2006).
[31] P. L. Rodríguez-Kessler and A. R. Rodríguez-Domínguez, J. Phys. Chem. C 119, 12378 (2015).
[32] S. Yuan, L. Meng, and J. Wang, J. Phys. Chem. C 117, 14796 (2013).
[33] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys.: Condens. Matter, 21, 395502 (2009).
[34] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[35] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[36] G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).
[37] V. Shah, T. Li, K. L. Baumert, H. Cheng, and D. S. Sholl, Surf. Sci. 527, 217-227 (2003).
[38] S. G. Wang, X. Y. Liao, J. Hu, D. B. Cao, Y. W. Li, J. Wang, and H. Jiao, Surf. Sci. 601, 1271 (2007).
[39] H. Liu, R. Zhang, R. Yan, B. Wang, and K. Xie, Appl. Surf. Sci. 257, 8955 (2011).
[40] R. Zhang, T. Duan, L. Ling, and B. Wang, Appl. Surf. Sci. 341, 100 (2015).
[41] S. G. Wang, D. B. Cao, Y. W. Li, J. G. Wang, and H. J. Jiao, J. Phys. Chem. B 110, 9976 (2006).
[42] G. Gajewski and C. W. Pao, J. Chem. Phys. 135, 064707 (2011).
[43] K. Li, C. He, M. Jiao, Y. Wang, and Z. Wu, CARBON, 74, 255 (2014).
[44] K. Li, M. Jiao, Y. Wang, and Z. Wu, Surf. Sci. 617, 149 (2013).
[45] B. Hammer and J. K. Nørskov, Surf. Sci. 343, 211 (1995).
[46] B. Hammer, Top. Catal. 37, 3 (2006).
[47] V. Pallassana and M. Neurock, J. Catal. 191, 301 (2000).
[48] J. Ding, Z. Qiao, W. Feng, Y. Yao, and Q. Niu, Phys. Rev. B 84, 195444 (2011).
[49] R. M. Watwe, H. S. Bengaard, J. R. Rostrup-Nielsen, J. A. Dumesic, and J. K. Nørskov, J. Catal. 189, 16 (2000).
Cite This Article
  • APA Style

    Tetsuya Ohkawa, Kei Kuramoto. (2017). Theoretical Study of CH4 Adsorption and C-H Bond Activation of CH4 on Metal Ad-atom of M@M (111) (M=Ni, Pd, Pt, Cu, Ag, Au). International Journal of Computational and Theoretical Chemistry, 4(3), 21-30. https://doi.org/10.11648/j.ijctc.20160403.12

    Copy | Download

    ACS Style

    Tetsuya Ohkawa; Kei Kuramoto. Theoretical Study of CH4 Adsorption and C-H Bond Activation of CH4 on Metal Ad-atom of M@M (111) (M=Ni, Pd, Pt, Cu, Ag, Au). Int. J. Comput. Theor. Chem. 2017, 4(3), 21-30. doi: 10.11648/j.ijctc.20160403.12

    Copy | Download

    AMA Style

    Tetsuya Ohkawa, Kei Kuramoto. Theoretical Study of CH4 Adsorption and C-H Bond Activation of CH4 on Metal Ad-atom of M@M (111) (M=Ni, Pd, Pt, Cu, Ag, Au). Int J Comput Theor Chem. 2017;4(3):21-30. doi: 10.11648/j.ijctc.20160403.12

    Copy | Download

  • @article{10.11648/j.ijctc.20160403.12,
      author = {Tetsuya Ohkawa and Kei Kuramoto},
      title = {Theoretical Study of CH4 Adsorption and C-H Bond Activation of CH4 on Metal Ad-atom of M@M (111) (M=Ni, Pd, Pt, Cu, Ag, Au)},
      journal = {International Journal of Computational and Theoretical Chemistry},
      volume = {4},
      number = {3},
      pages = {21-30},
      doi = {10.11648/j.ijctc.20160403.12},
      url = {https://doi.org/10.11648/j.ijctc.20160403.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijctc.20160403.12},
      abstract = {We have investigated the CH4 adsorption and the C-H bond breaking activation on the metal ad-atom of M@M (111) (M=Ni, Pd, Pt, Cu, Ag, Au) and M@M (111)/H (covered by hydrogen atoms) 3 and 1-layer surfaces (4-type surfaces) using spin-polarized Density Functional Theory (DFT). We find that the adsorption energies of methane are related to the d-band center of metal ad-atoms. In particular, the distances between CH4 and Ni, Pd, and Pt ad-atoms of 4-type surfaces are shortened and the adsorption energies of CH4 on metal ad-atoms are stronger than the perfect surfaces because the d-band center of metal ad-atoms are close to the Fermi level. Furthermore, we have investigated the activation barrier energies of C-H bond breaking of CH4 on Ni, Pt, and Ag ad-atoms of 4-type surfaces because Pt ad-atom exhibits stronger adsorption energy of CH4, Ag ad-atom exhibits weaker ones, and Ni utilizes for the steam reforming reaction. We find that Ni and Pt ad-atoms show lower activation barrier energies, and they are related to the CH4 adsorption energies as well as the d-band centers.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Theoretical Study of CH4 Adsorption and C-H Bond Activation of CH4 on Metal Ad-atom of M@M (111) (M=Ni, Pd, Pt, Cu, Ag, Au)
    AU  - Tetsuya Ohkawa
    AU  - Kei Kuramoto
    Y1  - 2017/01/10
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ijctc.20160403.12
    DO  - 10.11648/j.ijctc.20160403.12
    T2  - International Journal of Computational and Theoretical Chemistry
    JF  - International Journal of Computational and Theoretical Chemistry
    JO  - International Journal of Computational and Theoretical Chemistry
    SP  - 21
    EP  - 30
    PB  - Science Publishing Group
    SN  - 2376-7308
    UR  - https://doi.org/10.11648/j.ijctc.20160403.12
    AB  - We have investigated the CH4 adsorption and the C-H bond breaking activation on the metal ad-atom of M@M (111) (M=Ni, Pd, Pt, Cu, Ag, Au) and M@M (111)/H (covered by hydrogen atoms) 3 and 1-layer surfaces (4-type surfaces) using spin-polarized Density Functional Theory (DFT). We find that the adsorption energies of methane are related to the d-band center of metal ad-atoms. In particular, the distances between CH4 and Ni, Pd, and Pt ad-atoms of 4-type surfaces are shortened and the adsorption energies of CH4 on metal ad-atoms are stronger than the perfect surfaces because the d-band center of metal ad-atoms are close to the Fermi level. Furthermore, we have investigated the activation barrier energies of C-H bond breaking of CH4 on Ni, Pt, and Ag ad-atoms of 4-type surfaces because Pt ad-atom exhibits stronger adsorption energy of CH4, Ag ad-atom exhibits weaker ones, and Ni utilizes for the steam reforming reaction. We find that Ni and Pt ad-atoms show lower activation barrier energies, and they are related to the CH4 adsorption energies as well as the d-band centers.
    VL  - 4
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Electrical Engineering and Computer Sciences, University of Hyogo, Himeji, Hyogo, Japan

  • Department of Electrical Engineering and Computer Sciences, University of Hyogo, Himeji, Hyogo, Japan

  • Sections