| Peer-Reviewed

Impact of a Short – Term Malathion Exposure of Nile Tilapia, (Oreochromis niloticus): The Protective Role of Selenium

Received: 9 September 2015     Accepted: 20 September 2015     Published: 30 November 2015
Views:       Downloads:
Abstract

Malathion is an organophosphate pesticide widely used to control a variety of insects in agriculture. It can reach the aquatic ecosystems affecting non target organisms like fish. The purpose of this study was to determine LC50 of malathion and to investigate the possible protective effects of selenium on malathion-induced toxicity in Nile tilapia. The fish were exposed to sub lethal concentrations of malathion (1/2 and 1/4 LC50) for 15 days, and selenium (5.54 mg/kg of fish weight) was simultaneously administered. Blood and liver samples were collected at the end of the experiment. Biochemical parameters [serum glucose, cortisol, acetylcholinesterase (AchE)], haematological profiles [white blood cells (WBCs), red blood cells (RBCs) counts, haemoglobin (Hb) concentration, haematocrit (Ht) level], and oxidant/antioxidant statuses [lipid peroxidation (LPO) level, superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) activities] were analysed. The findings of the present study revealed that short-term exposure to malathion at sub lethal concentrations induced biochemical and haematological alterations in Oreochromis niloticus and led to oxidative damage. Moreover, the administration of selenium considered as an effective way to counter the toxicity of malathion in tilapia fish.

Published in International Journal of Environmental Monitoring and Analysis (Volume 3, Issue 5-1)

This article belongs to the Special Issue New Horizons in Environmental Science

DOI 10.11648/j.ijema.s.2015030501.15
Page(s) 30-37
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Malathion, Oreochromis niloticus, Fish Physiology, Oxidative Stress, Selenium

References
[1] A. Prakasam, S. Sethupathy and S. Lalitha, Plasma and RBCs antioxidant status in occupational male pesticide sprayers, Clin. Chim. Acta. 103(2001) 107–112.
[2] E. Storm, K. R. Karl and J. Doull, Occupational exposure limits for 30 organophosphate pesticides based on inhibition of red cell acetylcholinesterase, Toxicology. 150 (2000) 1–29.
[3] P. D. Moore, A. K. Patlolla, and P. B. Tchounwou, Cytogenetic evaluation of malathion-induced toxicity in Sprague–Dawley rats, Mutat. Res. Genet. Toxicol. Environ.7257 (2011) 8–82.
[4] C. A. Edwards, Pesticides residues in soil and water. In: Edwards, C. A. (Ed.), Environmental Pollutionby Pesticides. Plenum Press, London, (1973) pp.409–458.
[5] R. D. Wauchope, T. M. Buttler, A. G. Hornsby, P. M. Augustin-Beckers, and J. P. Burt, The SCS/ARS/CES pesticide properties database for environmental decision making, Environ. Contam. Toxicol. 123 (1992) 1–155.
[6] E. Bonilla, F. Hernández, L. Cortés, M. Mendoza, J. Mejía, E. Carrillo, E. Casas, and M. Betancourt, Effects of the insecticides malathion and diazinon on the early oogenesis in mice in vitro, Environ. Toxicol. 23 (2008) 240–245.
[7] R. Sarkar, K. P. Mohanakumar, and M. Chowdhury, Effects of an organophosphate pesticide, quinalphos, on the hypothalamo–pituitary–gonadal axis in adult male rats, J. Reprod. Fertil. 118 (2000) 29–38.
[8] L. W. H. U. Chandrasekara and A. Pathiratne, Body size-related difference in the inhibition of brain acetylcholinesterase activity in juvenile Nile tilapia (Oreochromis niloticus) by chlorpyrifos and carbosulfan, Ecotoxicol. Environ. Saf. 67(2007) 109–119.
[9] M. H. Fulton, and P. B. Key, Acetylcholinesterase inhibition in estuarine fish and in vertebrates as an indicator of organophosphorus insecticide exposure and effects, Environ. Toxicol. Chem. 20 (2001) 37–45.
[10] K. A. Modesto, and C. B. R. Martinez, Effects of round up transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity, Chemosphere. 81(2010) 781–787.
[11] N. Kumar, P. A. J. Prabhu, A. K. Pal, S. Remya, M. Aklakur, R. S. Rana, S. Gupta, R. P. Raman, and S. B. Jadha, Anti-oxidative and immuno-hematological status of Tilapia (Oreochromis mossambicus) during acute toxicity test of endosulfan, Pest. Biochem. Physiol. 99 (2011) 45–52.
[12] I. Sayeed, S. Parvez, S. Pandey, B. Bin-Hafeez, R. Haque, and S. Raisuddin, Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch., Ecotoxicol. Environ. Saf. 56 (2003) 295–301.
[13] S. P. S. Woo, W.H. Liu, D. W. T. Au, D. M. Anderson, and R. S. S. Wu, Antioxidant responses and lipid peroxidation in gills and erythrocytes of fish (Rhabdo sargasarba) upon exposure to Chattonella marina and hydrogen peroxide: implicationson the cause of fish kills, J. Exp. Mar. Biol. Ecol. 336 (2006) 230–241.
[14] B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford. (1999) pp. 543.
[15] M. Orbea, M. O. Sole´, C. Porte, and M. P. Cajaraville, Antioxidant enzymes and peroxisome proliferation in relation to contaminant body bordens of PAHs and PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries (Bay of Biscay), Aquat. Toxicol. 58 (2002) 75–98.
[16] S. J. Hamilton, Review of selenium toxicity in the aquatic food chain, Sci. Total Environ. 326 (2004) 1–31.
[17] C. D. Thomson, Assessment of requirements for selenium and adequacy of selenium status: a review, Eur. J. Clin. Nutr.58 (2004) 391-402.
[18] M. S. Akhtar, A. A. Farooq, and M. Mushtaq, Serum concentrations of copper, iron, zinc and selenium in cyclic and anoestrus Nili-Ravi buffaloes kept under farm conditions, Pak. Vet. J. 29 (2009) 47-48.
[19] D. C. Schwenke and S. R. Behr, Vitamin E combined with selenium inhibits atherosclerosis in hypercholesterolemic rabbits independently of effects of plasma cholesterol concentrations, Circ. Res. 83(1998) 366-377.
[20] F. Aslam, A. Khan, M. Z. Khan, S. Sharaf, S. T. Gul, and M. K. Saleemi, Toxicopathological changes induced by cypermethrin in broiler chicks: their attenuation with vitamin E and selenium, Exp. Toxicol. Pathol. 6 (2010) 441-450.
[21] C. Wang and R. T. Lovell, Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus), Aquaculture. 152 (1997) 223– 234.
[22] T. Watanabe, V. Kiron, and S. Datoh, Trace minerals in fish nutrition, Aquaculture. 151(1997) 185–207.
[23] J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra, Selenium: biochemical role as a component of glutathione peroxidase, Science. 179 (1973) 588–590.
[24] J. T. Litchfield, and F. Wilcoxon, A simplified method of evaluating dose– effect experiments, J. Pharmacol. Exp. Ther. 96 (1949) 99–113.
[25] M. A. Tawwab, and M. Wafeek, Response of Nile tilapia, Oreochromis niloticus L. to environmental cadmium toxicity during organic selenium supplementation. W. Contreras and K. Fitzsimmons, editors. 8th International Symposium on Tilapia in Aquaculture 2008.Boca del Rio, Veracruz, Mexico. (2008) pp.415-430.
[26] N. W. Falkner, and A. H. Houston, Some haematological responses to sub lethal thermal shock in the gold fish, Carassius auratus, J. Fish Res. Bd. Con. 23 (8) (1966) 1109-1113.
[27] P. Trinder, Determination of blood glucose using 4- Aminophenazone, J. Clin. Pathol. 22 (1959) 246.
[28] L. Foster, and R. Dunn, Single antibody technique for radioimmunoassay of cortisol in un extracted serum or plasma, Clin. Chem. 20 (1974) 365.
[29] M. Knedel, and R. Böttger, Eine kinetische Methode zur Bestimmung der Aktivitat der Pseudocholinesterase (Acylcholine-acylhydrolase), Klin Wochenschr. 45 (1967) 325–327.
[30] A. E. Kanaeu, "Fish Pathology". The British Crown Colony of Hong kong. (1985) pp. 154.
[31] E. J. Van Kampen, and W. G. Zijlstra, Standardization of haemoglobinometry II. The hemoglobin cyanide method, Clin. Chim. Acta. 6 (1961) 538-544.
[32] N. C. Jain, Schalm's Veterinary Haematology. 5th Ed. Lea and Fabiger, Philadelphia. (2000) pp. 1120-1125.
[33] J. A. Buege, and S. D. Aust, Microsomallipidperoxidation. Methods Enzymol. 52 (1978) 302–310.
[34] M. Paya´, B. Halliwell, and J. R. S. Hoult, Interactions of a series of coumarins with reactive oxygen species, Biochem. Pharmacol. 44 (1992) 205–214.
[35] W. H. Habig, M. J. Pabst, and W. B. Jakoby, Glutathione S-transferases. The first enzymatic step in mercapturic acid formation, J. Biol. Chem. 249 (1974) 7130–7139.
[36] H. Aebi, Catalase in vitro. Method. Enzymol.105 (1984) 121 – 126.
[37] SPSS, "Statistical and package for social science, SPSS for windows release 14.0.0, 19 June, 2004." Standard version, copyright SPSS Inc., 1989 – 2004.
[38] A. Pathiratne, and S. G. George, Toxicity of malathion to Nile tilapia, Oreochromis niloticus and modulation by other environmental contaminants, Aquat. Toxicol. 43(1998) 261–71.
[39] M. M. M. Kandiel, A. M. El-Asely, H. A. Radwan, and A. A. Abbass, Modulation of genotoxicity and endocrine disruptive effects of malathion by dietary honeybee pollen and propolis in Nile tilapia (Oreochromis niloticus), J.A.R. 5(6) (2014) 671-684.
[40] P. R. Durkin, Malathion; Human Health and ecological risk assessment. Final report submitted to Paul Mistretta, PCR, USDA/Forest Service, Southern region, Atlanta Georgia. SERA TR-052-02-02c, (2008) pp. 325.
[41] K. A. Al-Ghanim, Acute toxicity and effects of sub-lethal malathion exposure on biochemical and haematological parameters of Oreochromis niloticus, Sci. Res. 7(16) (2012) 1674–1680.
[42] V. K. Patil, and M. David, Behavioral and morphological endpoints: as an early response to sub lethal malathion intoxication in the freshwater fish, Labeo rohita, Drug Chem. Toxicol. 33(2) (2010) 160-165.
[43] Z. Ahmad, Toxicity bioassay and effects of sublethal exposure of malathion on biochemical composition and haematological parameters of C. gariepinus, Afr. J. Biotechnol. 11(34) (2012) 8578 - 8585.
[44] B. O. Omitoyin, E. K. Ajani, and A. Fajinmi, Toxicity of gramoxone (paraquat) to juveniles of African catfish, Clarias gariepinus (Burchell, 1822), American Eurasians. J. Agric. Environ. Sci. 1 (2006) 26-30.
[45] H. F. Al-kahem, Z. Ahmed, A. S. Al-Akel, and M. J. K. Shamsi, Toxicity bioassay and changes in haematological parameter of Oriochromis niloticus induced by trichloroform, Arab Gulf J. Sci. Res. 16 (1998) 581–593.
[46] P. J. John, Alteration of certain blood parameters of freshwater teleost Mystus vittatus after chronic exposure to metasystox and sevin, Fish Physiol. Biochem. 33(2007) 15–20.
[47] E. U. Winkalar, T. R. M. Santosh, J. G. Machdo-Neto and C. B. R. Martinez, Acute lethal and sublethal effects of neem leaf extracts on neotrapical freshwater fish, Prochilodus lineatus, Comp. Biochem. Physiol. 145(C) (2007) 236-244.
[48] D. G. Toal, L. O. B. Afonso, and G. K. Iwama, Stress response of juvenile rainbow trout (Oncorhynchus mykiss) to chemical cues released from stressed conspecifics. Fish Physiol. Biochem. 30 (2004)103–108.
[49] S. A. Bakhshwan, M. S. Marzouk, M. I. Hanna, and H. S. Hamed, Some investigation on the clinical and biochemical alterations associated with diazinon toxicity in clarias gariepinus, Egypt. J. Aquat. Biol. Fish. 13(2) (2009)173 -197.
[50] J. L. Specker, and C. B. Schreck, Changes in plasma corticosteroids during smoltification of coho salmon, Oncorhynchus kisutch, Gen. Comp. Endocrinol. 46(1982) 53–58.
[51] M. Saravanan, K. Prabhu Kumar, and M. Ramesh, Haematological and biochemical responses of freshwater teleost fish Cyprinus carpio (Actinopterygii: Cypriniformes) during acute and chronic sublethal exposureto lindane, Pest. Biochem. Physiol. 100 (2011) 206–211.
[52] M. Banaee, A. Sureda, A. Mirvaghefi, and K. Ahmadi, Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss), Pest. Biochem. Physiol. 99 (2011) 1–6.
[53] R. D. O’Brien, Toxic Phosphorus Esters: Chemistry, Metabolism and Biological Effects, Academic Press, New York. (1967).
[54] R. Fukuto, Mechanism of action of organophosphorous and carbamate insecticides, Environ. Health Perspect. 87(1990) 245–254.
[55] L. G. Costa, Interactions of neurotoxicants with neurotransmitter systems, Toxicology. 49 (1988) 359–366.
[56] M. S. Jordaan, S. A. Reinecke, and A. J. Reinecke, Biomarker responses and morphological effects in juvenile tilapia Oreochromis mossambicus following sequential exposure to the organophosphate azinphos-methyl, Aquat. Toxicol. 144– 145 (2013) 133– 140.
[57] S. A. Harabawy, and Th. A. Ibrahim, Sublethal toxicity of carbofuran pesticide on the African catfish Clarias gariepinus (Burchell, 1822): Hematological, biochemical and cytogenetic response, Ecotoxicol. Environ. Saf. 103 (2014) 61-67.
[58] P. T. Dick, and D. G. Dixon, Changes in circulating blood cell levels of rainbow trout, Salmo gairdneri (richardson), following acute and chronic exposure to copper, J. Fish Biol. 26(4) (1985) 475–484.
[59] S. M. Yonar, M. S. Ural, S. Silici, and M. E. Yonar, Malathion-induced changes in the haematological profile, the immune response and the oxidative/antioxidant status of Cyprinus carpio: Protective role of propolis, Ecotoxicol. Environ. Saf. 102 (2014) 202–209.
[60] T. Vani, N. Saharan, S. C. Mukherjee, R. Ranjan, R. Kumar, and R. K. Brahmchari, Deltamethrin induced alterations of hematological and biochemical parameters in fingerlings of Catla catla (Ham.) and their amelioration by dietary supplement of vitamin C, Pest. Biochem. Physiol. 101(2011) 16–20.
[61] M. Banaee, Physiological dysfunctionin fish after insecticides exposure. In: Stanislav Trdan,P. (Ed.), Insecticides – Development of Safer and More Effective Technologies. (2013) ISBN: 978-953-51-0958-7.
[62] M. Ferreira, P. Moradas-Ferreira, and M.A. Rei Henriques, Oxidative stress biomarkers in two resident species, mullet (Mugil cephalus) and flounder (Platichthys flesus), from a polluted site in River Douro Estuary, Portugal. Aquat. Toxicol.71 (2005) 39–48.
[63] S. M. Kadry, M. S. Marzouk, A. M. Amer, M. I. Hanna, A. H. Azmy, and H. S. Hamed, Vitamin E as antioxidant in female african catfish (Clarias gariepinus) exposed to chronic toxicity of atrazine, Egypt. J. Aquat. Biol. Fish. 16(2) (2012) 83 – 98.
[64] S. M. Yonar, Toxic effects of malathion in carp, Cyprinus carpio: Protective role of lycopene, Ecotoxicol. Environ. Saf. 97(2013) 223-229.
[65] A. Mirvaghefi, M. Ali, and F. Asadi, Effects of vitamin E, selenium and vitamin C on various biomarkers following oxidative stress caused by diazinon exposure in Rainbow trout, J. Aquac. Mar. Biol. 2(4) (2015) 1- 9.
[66] H. Xing, S. Li, Z. Wang, X. Gao, S. Xu, and X. Wang, Oxidative stress response and histopathological changes due to atrazine and chlorpyrifos exposure in common carp, Pest. Biochem. Physiol. 103(1) (2012) 74-80.
[67] Th. A. Ibrahim, and S. A. Harabawy, Sublethal toxicity of carbofuran on the African catfish Clarias gariepinus: Hormonal enzymatic and antioxidant responses, Ecotoxicol. Environ. Saf. 106(2014) 33-39.
[68] M. Dimitrova, V. Tishinova, and V. Velcheva, Combined effect of zinc and lead on the hepatic superoxide dismutase- catalase system in carp (Cyprinus carpio), Comp. Biochem. Physiol. 108 (1994) 43-46.
[69] C. D. Bainy, E. Saito, S. M. Carvalho, and B. C. Junqueira, Oxidative stress in gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site, Aquat. Toxicol. 34 (1996) 151-162.
[70] Y. Sun, H. Yu, J. Zhang, Y. Yin, H. Shi, and X Wang, Bioaccumulation depuration and oxidative stress in fish Carassius auratus under under phenanthrene exposure, Chemosphere. 63 (8) (2006) 1319-1327.
[71] M. Jain, C. Ghanashyam and A. Bhattacharjee, Comprehensive expression analysis suggests over lapping and specific roles of rice glutathione S-transferase genes during development and stress responses, BMC Genomics. 11 (2010) 73.
[72] J. Rendón-vonOsten, A. Ortíz-Arana, L. Guilhermino, and A. M. Soares, In vivo evaluation of three biomarkers in the mosquito fish (Gambusia yucatana) exposed to pesticides, Chemosphere. 58: (2005) 627–636.
[73] Y. Luo, Y. Su, R. Z. Lin, H. H. Shi, and X. R. Wang, 2-Chlorophenol induced ROS generation in fish Carassius auratus based on the EPR method, Chemosphere. 65 (6) (2006) 1064–1073.
[74] D. A. Monteiro, F. T. Rantin, and A. L. Kalinin, The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinxã, Brycon cephalus (Günther, 1869) exposed to organophosphate insecticide Folisuper 600 BR® (methyl parathion), Comp. Biochem. Physiol. C: 149 (1) (2009) 40–49.
[75] K. Hamre, T. A. Mollan, Ø. Sæle, and B. Erstad, Rotifers enriched with iodine and selenium increase survival in Atlantic cod (Gadus morhua) larvae, Aquaculture. 284 (1–4) (2008) 190–195.
[76] A.R.A. Ribeiro, L. Ribeiro, M.T. Dinis, and M. Moren, Protocol to enrich rotifers (Brachionus plicatilis) with iodine and selenium, Aquac. Res. 42(11) (2011) 1737–1740.
[77] C. B. Stephensen, G. S. Marquis, S. D. Douglas, L. A. Kruzich, and C. M. Wilson, Glutathione, glutathioneperoxidase and selenium statusin HIV-positive and HIV negative adolescents and young adults, Am. J. Clin. Nutr. 85 (2007) 173–181.
[78] A. M. Ali, The effect of antioxidant nutrition against fenvalerate toxicity in rat liver (histological and immunohistochemical studies), Annu. Rev. Res. Biol. 3(2013) 636–648.
[79] S. A. Elgaml, R. Khalil, E. A. Hashish, and A. El-Murr, Protective Effects of selenium and Alpha-Tocopherol against lead induced hepatic and renal toxicity in Oreochromis niloticus, J. Aquac. Res. Development. 6(1) (2015) 299-303.
[80] C. A. Zuberbuehler, R. E. Messikommera, M. M. Arnold, R. S. Forrer, and C. Wenk, Effects of selenium depletion and selenium repletion by choice feeding on selenium status of young and old laying hens, Physiol. Behav. 87 (2006) 430–440.
[81] P. C. Hsu, and Y. L. Guo, Antioxidant nutrients and lead toxicity, Toxicology. 180 (2002) 33–44.
[82] S. K. S. Sarada, M. Sairam, P. Dipti, B. Anju, T. Pauline, A. K. Kain, S. K. Sharma, S. Bagawat, G. Ilavazhagan, and D. Kumar, Role of selenium in reducing hypoxia-induced oxidative stress: an in vivo study, Biomed. Pharmacother. 56 (2002) 173–178.
[83] L. C. Chien, C. Y. Yeh, S. H. Huang, M. J. Shieh, and B. C. Han, Pharmacokinetic model of daily selenium intake from contaminated seafood in Taiwan, Sci. Total Environ. 311(2003) 57–64.
Cite This Article
  • APA Style

    Heba S. Hamed. (2015). Impact of a Short – Term Malathion Exposure of Nile Tilapia, (Oreochromis niloticus): The Protective Role of Selenium. International Journal of Environmental Monitoring and Analysis, 3(5-1), 30-37. https://doi.org/10.11648/j.ijema.s.2015030501.15

    Copy | Download

    ACS Style

    Heba S. Hamed. Impact of a Short – Term Malathion Exposure of Nile Tilapia, (Oreochromis niloticus): The Protective Role of Selenium. Int. J. Environ. Monit. Anal. 2015, 3(5-1), 30-37. doi: 10.11648/j.ijema.s.2015030501.15

    Copy | Download

    AMA Style

    Heba S. Hamed. Impact of a Short – Term Malathion Exposure of Nile Tilapia, (Oreochromis niloticus): The Protective Role of Selenium. Int J Environ Monit Anal. 2015;3(5-1):30-37. doi: 10.11648/j.ijema.s.2015030501.15

    Copy | Download

  • @article{10.11648/j.ijema.s.2015030501.15,
      author = {Heba S. Hamed},
      title = {Impact of a Short – Term Malathion Exposure of Nile Tilapia, (Oreochromis niloticus): The Protective Role of Selenium},
      journal = {International Journal of Environmental Monitoring and Analysis},
      volume = {3},
      number = {5-1},
      pages = {30-37},
      doi = {10.11648/j.ijema.s.2015030501.15},
      url = {https://doi.org/10.11648/j.ijema.s.2015030501.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijema.s.2015030501.15},
      abstract = {Malathion is an organophosphate pesticide widely used to control a variety of insects in agriculture. It can reach the aquatic ecosystems affecting non target organisms like fish. The purpose of this study was to determine LC50 of malathion and to investigate the possible protective effects of selenium on malathion-induced toxicity in Nile tilapia. The fish were exposed to sub lethal concentrations of malathion (1/2 and 1/4 LC50) for 15 days, and selenium (5.54 mg/kg of fish weight) was simultaneously administered. Blood and liver samples were collected at the end of the experiment. Biochemical parameters [serum glucose, cortisol, acetylcholinesterase (AchE)], haematological profiles [white blood cells (WBCs), red blood cells (RBCs) counts, haemoglobin (Hb) concentration, haematocrit (Ht) level], and oxidant/antioxidant statuses [lipid peroxidation (LPO) level, superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) activities] were analysed. The findings of the present study revealed that short-term exposure to malathion at sub lethal concentrations induced biochemical and haematological alterations in Oreochromis niloticus and led to oxidative damage. Moreover, the administration of selenium considered as an effective way to counter the toxicity of malathion in tilapia fish.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Impact of a Short – Term Malathion Exposure of Nile Tilapia, (Oreochromis niloticus): The Protective Role of Selenium
    AU  - Heba S. Hamed
    Y1  - 2015/11/30
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ijema.s.2015030501.15
    DO  - 10.11648/j.ijema.s.2015030501.15
    T2  - International Journal of Environmental Monitoring and Analysis
    JF  - International Journal of Environmental Monitoring and Analysis
    JO  - International Journal of Environmental Monitoring and Analysis
    SP  - 30
    EP  - 37
    PB  - Science Publishing Group
    SN  - 2328-7667
    UR  - https://doi.org/10.11648/j.ijema.s.2015030501.15
    AB  - Malathion is an organophosphate pesticide widely used to control a variety of insects in agriculture. It can reach the aquatic ecosystems affecting non target organisms like fish. The purpose of this study was to determine LC50 of malathion and to investigate the possible protective effects of selenium on malathion-induced toxicity in Nile tilapia. The fish were exposed to sub lethal concentrations of malathion (1/2 and 1/4 LC50) for 15 days, and selenium (5.54 mg/kg of fish weight) was simultaneously administered. Blood and liver samples were collected at the end of the experiment. Biochemical parameters [serum glucose, cortisol, acetylcholinesterase (AchE)], haematological profiles [white blood cells (WBCs), red blood cells (RBCs) counts, haemoglobin (Hb) concentration, haematocrit (Ht) level], and oxidant/antioxidant statuses [lipid peroxidation (LPO) level, superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) activities] were analysed. The findings of the present study revealed that short-term exposure to malathion at sub lethal concentrations induced biochemical and haematological alterations in Oreochromis niloticus and led to oxidative damage. Moreover, the administration of selenium considered as an effective way to counter the toxicity of malathion in tilapia fish.
    VL  - 3
    IS  - 5-1
    ER  - 

    Copy | Download

Author Information
  • Department of Zoology, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo, Egypt

  • Sections