Mononuclear binary and ternary complexes of UO22+ ion with N-salicylidene-4-Aminotoluene-3-sulfonic acid as primary ligand and 8-hydroxyquinoline as coligand have been prepared. The elemental analysis, molar conductance, IR and solid reflectance spectra in addition to the magnetic moment measurements, thermal study, XRD and SEM analysis were utilized to investigate the coordination behavior of these complexes. From the investigation data, all complexes have metal to ligand ratio of 1:1 and 1:1:1 with octahedral and dodecahedral geometry for binary and ternary complexes, respectively and the force constant, FU-O and bond length, RU-O were calculated. The thermal behavior of these complexes was investigated and the thermal decomposition pathways have been postulated showing that the final product is metal or metal oxide. Antimicrobial properties of the complexes have also been examined against Staphylococcus aureus (ATCC 25923), Streptococcus pyogenes (ATCC 19615), Pseudomonas fluorescens (S 97), Pseudomonas phaseolicola (GSPB 2828), Fusarium oxysporum and Aspergillus fumigatus. The corrosion inhibition of aluminum specimens in acidic solution was studied by weight loss method. The ternary complex, [UO2(HL)(8-Oqu)H2O] was found to be exhibits excellent inhibitory activity against the different microorganisms in addition to its corrosion inhibition efficiency towards Al-specimens in acidic solution more than the binary complex, [UO2(HL)NO3].2H2O.
Published in | Modern Chemistry (Volume 2, Issue 3) |
DOI | 10.11648/j.mc.20140203.11 |
Page(s) | 19-28 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
8-Hydroxyquinoline, Mixed Ligand Complexes, Spectroscopic Characterization, Thermal Investigation, Acid Inhibition, Biological Study
[1] | L.S. Natrajana, A.N. Swinburnea, M.B. Andrewsa, S. Randalla and S. L. Heatha, Coord. Chem. Rev., 2014, 267, 171–193. |
[2] | J.P. Dognon, Coord. Chem. Rev., 2014, 266, 110–122. |
[3] | R.J. Baker, Chem. Eur. J., 2012, 18, 16258 – 16271. |
[4] | S. D. Houwer and C. G. Walrand, J. Alloys Compd., 2001, 323–324, 683–687. |
[5] | S.K. Gupta, N. Sen and R. J. Butcher, Polyhedron, 2014, 71, 34–41. |
[6] | A.Z. El-Sonbati, M. A. Diab, A. A. El-Bindary, M. I. Abou-Dobara and H. A. Seyam, Spectrochim. Acta Part A, 2013, 104, 213–221. |
[7] | J. Dharmaraja, T. Esakkidurai, P. Subbaraj and S. Shobana, Spectrochim. Acta Part A, 2013, 114, 607-621. |
[8] | A.A. Faheim, S.N. Abdou and Z. H. Abd El-Wahab, Spectrochim. Acta Part A, 2013, 105, 109-124. |
[9] | M. Shebl, Spectrochim. Acta Part A, 2014, 117, 127-137. |
[10] | M. Shebl, S. M. E. Khalil and F. S. Al-Gohani, J. Mol. Struct., 2010, 980, 78-83. |
[11] | X. Li, S. Deng and H. Fu, Corros. Sci., 2012, 62, 163–175. |
[12] | M. Aljahdali, Spectrochim. Acta Part A, 2013, 112, 364-376. |
[13] | J. F. Wang, N. Ren, F. T. Meng, J. J. Zhang, Thermochim. Acta., 2011, 512, 118-123. |
[14] | Z. H. Abd El-Wahab, Spectrochim. Acta Part A, 2007, 67, 25-38. |
[15] | H. A. El-Boraey, F. A. El-Saied and S. A. Aly, J. Therm. Anal. Calorim. 2009, 96, 599–606. |
[16] | A. A. Nejo, G. A. Kolawole and A. O. Nejo, J. Coord. Chem., 2010, 63, 4398-4410. |
[17] | A. Manimaran and C. Jayabalakrishnan, Synth. React. Inorg. Met-Org. Nano-Met. Chem., 2010, 40, 116-128. |
[18] | N. Raman and A. Selvan, J. Mol. Struct., 2011, 985, 173-183. |
[19] | M. N. Abd El-Hady, R. R. Zaky, K. M. Ibrahim and E. A. Gomaa, J. Mol. Struct., 2012, 1016, 169–180. |
[20] | A. A. Ibrahim, A. M. Adel, Z. H. Abd El–Wahab and M. T. Al–Shemy, Carbohydr. Polym., 2011, 83, 94–115. |
[21] | Z. H. Abd El-Wahab, J.Coord. Chem., 2008, 61, 3284–3296. |
[22] | Z. H. Abd El-Wahab, M. M. Mashaly and A. A. Faheim, Chem. Pap., 2005, 59, 25-36. |
[23] | S. A. Sadeek, M. S. El-Attar and S. M. Abd El-Hamid, J. Mol. Struct., 2013, 1051, 30–40. |
[24] | O. M. I. Adly, Spectrochim. Acta Part A., 2011, 79, 1295– 1303. |
[25] | A. A. Faheim, Spectrochim. Acta Part A., 2012, 88, 10– 22 |
[26] | J. Wanga, F. Mengc, S. Xud, X. Liua and J. Zhanga, Thermochim. Acta., 2011, 521, 2– 8 |
[27] | F. A. Al-Saif and M. S. Refat, J. Therm. Anal. Calorim., 2013, 111, 2079–2096. |
[28] | E. H. El-Mossalamy, F. M. Al-Nowaiser, S. A. Al-Thabaiti, A. O. Al-Youbi, S. N. Baschel and A. Y. Obaid, Monatsh. Chem., 2007, 138, 853–857. |
[29] | M. Behpour, S. M. Ghoreishi, N. Mohammadi, N. Soltani and M. S. Niasari, Corros. Sci., 2010, 52, 4046–4057. |
[30] | I. B. Obot, E. E. Ebenso and M. M. Kabanda, J. Environ. Chem. Eng., 2013, 1, 431–439. |
[31] | S. E. Nataraja, T.V. Venkatesha and H.C. Tandon, Corros. Sci., 2012, 60, 214–223. |
[32] | E.E. Ebenso, Mater. Chem. Phys., 2003, 79, 58–70. |
[33] | N. A. Negm, Y. M. Elkholy, M. K. Zahran and S. M. Tawfik, Corros. Sci., 2010, 52, 3523–3536. |
[34] | G. Achary, H. P. Sachin, Y. A. Naik and T.V. Venkatesha, Mater. Chem. Phys., 2008, 107, 44–50. |
[35] | Y. Harinath, D. H. K. Reddy, B. N. Kumar, C. Apparao and K. Seshaiah, Spectrochim. Acta Part A, 2013, 101, 264–272. |
APA Style
Abeer A. Faheim. (2014). Synthesis and Characterization of Binary and Ternary Dioxouranium (VI) Complexes with Oxygen, Nitrogen and Sulphur Donor Ligands. Modern Chemistry, 2(3), 19-28. https://doi.org/10.11648/j.mc.20140203.11
ACS Style
Abeer A. Faheim. Synthesis and Characterization of Binary and Ternary Dioxouranium (VI) Complexes with Oxygen, Nitrogen and Sulphur Donor Ligands. Mod. Chem. 2014, 2(3), 19-28. doi: 10.11648/j.mc.20140203.11
AMA Style
Abeer A. Faheim. Synthesis and Characterization of Binary and Ternary Dioxouranium (VI) Complexes with Oxygen, Nitrogen and Sulphur Donor Ligands. Mod Chem. 2014;2(3):19-28. doi: 10.11648/j.mc.20140203.11
@article{10.11648/j.mc.20140203.11, author = {Abeer A. Faheim}, title = {Synthesis and Characterization of Binary and Ternary Dioxouranium (VI) Complexes with Oxygen, Nitrogen and Sulphur Donor Ligands}, journal = {Modern Chemistry}, volume = {2}, number = {3}, pages = {19-28}, doi = {10.11648/j.mc.20140203.11}, url = {https://doi.org/10.11648/j.mc.20140203.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.mc.20140203.11}, abstract = {Mononuclear binary and ternary complexes of UO22+ ion with N-salicylidene-4-Aminotoluene-3-sulfonic acid as primary ligand and 8-hydroxyquinoline as coligand have been prepared. The elemental analysis, molar conductance, IR and solid reflectance spectra in addition to the magnetic moment measurements, thermal study, XRD and SEM analysis were utilized to investigate the coordination behavior of these complexes. From the investigation data, all complexes have metal to ligand ratio of 1:1 and 1:1:1 with octahedral and dodecahedral geometry for binary and ternary complexes, respectively and the force constant, FU-O and bond length, RU-O were calculated. The thermal behavior of these complexes was investigated and the thermal decomposition pathways have been postulated showing that the final product is metal or metal oxide. Antimicrobial properties of the complexes have also been examined against Staphylococcus aureus (ATCC 25923), Streptococcus pyogenes (ATCC 19615), Pseudomonas fluorescens (S 97), Pseudomonas phaseolicola (GSPB 2828), Fusarium oxysporum and Aspergillus fumigatus. The corrosion inhibition of aluminum specimens in acidic solution was studied by weight loss method. The ternary complex, [UO2(HL)(8-Oqu)H2O] was found to be exhibits excellent inhibitory activity against the different microorganisms in addition to its corrosion inhibition efficiency towards Al-specimens in acidic solution more than the binary complex, [UO2(HL)NO3].2H2O.}, year = {2014} }
TY - JOUR T1 - Synthesis and Characterization of Binary and Ternary Dioxouranium (VI) Complexes with Oxygen, Nitrogen and Sulphur Donor Ligands AU - Abeer A. Faheim Y1 - 2014/08/20 PY - 2014 N1 - https://doi.org/10.11648/j.mc.20140203.11 DO - 10.11648/j.mc.20140203.11 T2 - Modern Chemistry JF - Modern Chemistry JO - Modern Chemistry SP - 19 EP - 28 PB - Science Publishing Group SN - 2329-180X UR - https://doi.org/10.11648/j.mc.20140203.11 AB - Mononuclear binary and ternary complexes of UO22+ ion with N-salicylidene-4-Aminotoluene-3-sulfonic acid as primary ligand and 8-hydroxyquinoline as coligand have been prepared. The elemental analysis, molar conductance, IR and solid reflectance spectra in addition to the magnetic moment measurements, thermal study, XRD and SEM analysis were utilized to investigate the coordination behavior of these complexes. From the investigation data, all complexes have metal to ligand ratio of 1:1 and 1:1:1 with octahedral and dodecahedral geometry for binary and ternary complexes, respectively and the force constant, FU-O and bond length, RU-O were calculated. The thermal behavior of these complexes was investigated and the thermal decomposition pathways have been postulated showing that the final product is metal or metal oxide. Antimicrobial properties of the complexes have also been examined against Staphylococcus aureus (ATCC 25923), Streptococcus pyogenes (ATCC 19615), Pseudomonas fluorescens (S 97), Pseudomonas phaseolicola (GSPB 2828), Fusarium oxysporum and Aspergillus fumigatus. The corrosion inhibition of aluminum specimens in acidic solution was studied by weight loss method. The ternary complex, [UO2(HL)(8-Oqu)H2O] was found to be exhibits excellent inhibitory activity against the different microorganisms in addition to its corrosion inhibition efficiency towards Al-specimens in acidic solution more than the binary complex, [UO2(HL)NO3].2H2O. VL - 2 IS - 3 ER -