Carbon nanotubes either single-walled or multiwalled have been a focus in materials research. Carbon nanotubes are tubular structures of nanometer diameter and large length/diameter ratio. The nanotubes may consist of one, tens and hundreds of concentric shells of carbons with adjacent shells separation of ˜0.34 nm and they can have different individual structures, morphologies and properties. Hence, a wide variety of synthetic methods have been developed to produce the desired materials and properties for scientific studies or technological applications. In this study we succeeded to develop a chemical synthetic method that allows us to prepare carbon nanotubes (CNTs) from graphite powder easily and inexpensively at low temperatures (below 70°C) and without applying pressure.
Published in | American Journal of Nano Research and Applications (Volume 5, Issue 2) |
DOI | 10.11648/j.nano.20170502.11 |
Page(s) | 12-18 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Carbon Nanotubes, Fertilizer, Synthesis, Zeta Potentials, Infra-red Spectroscopy
[1] | Popov, V. N. (2004). Carbon nanotubes: properties and application. Materials Science and Engineering, 43: 61–102. |
[2] | Endo, M. (1975). Mecanisme de croissance en phase vapeur de fibres de carbone. PhD thesis, University of Orleans, France. |
[3] | Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354: 56–58. |
[4] | Qiu, J.; Li, Y.; Wang, Y. and Li W. (2004). Production of carbon nanotubes from coal. Fuel Processing Technology, 85: 1663– 1670. |
[5] | Dai, H.; Kong, J.; Zhou, C.; Franklin, N.; Tombler, T.; Cassell, A.; Fan, S. and Chapline, M. (1999). Controlled chemical routes to nanotube architectures, physicsand devices, Journal of Physical Chemistry, 103: 11246–11255. |
[6] | Dai, H. (2002). Carbon nanotubes: synthesis, integration, and properties. Accounts of Chemical Research, 35: 1035–1044. |
[7] | Lal, R (2008). Soils and India’s food security. Journal of the Indian Society of Soil Science, 56: 129–138. |
[8] | Jinghua, G. (2004). Synchrotron radiation, soft X-ray spectroscopy and nano-materials. Journal of Nanotechnology, 1: 193-225. |
[9] | Lee, D. W. and Seo, J. W. (2011). Preparation of carbon nanotubes from graphite powder at room temperature. http://arxiv.org/pdf/1007.1062. |
[10] | Hasaneen, M. N. A.; Abdel-Aziz, H. M. M.; El-Bialy; D. M. A. and Omer, A. M. (2014). Preparation of chitosan nanoparticles for loading with NPK. African Journal of Biotechnology, 13: 3158-3164. |
[11] | Nallamuthu, I.; Devi, A. and Khanum, F. (2015). Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian Journal of pharmaceutical Science, 10: 203- 211. |
[12] | Steeds, J. W. (1981). In Quantitative Microanalysis with High Spatial Resolution, The Metals Society, London, 210. |
[13] | Champaness, P. E. (1987). Convergent beam electron diffraction. Mineralogical Magazine, 51: 33-48. |
[14] | Frederick, M. D (2009). Measuring Zeta Potential of Nanoparticles. Nanotechnology Characterization Laboratory. http://104.154.93.228/the-national-cancer-institute-at-frederick.Pdf. |
[15] | Trykowski, G.; Biniak, S.; Stobinski, L. and Lesiak, B. (2010). Preliminary Investigations into the Purification and Functionalization of Multiwall Carbon Nanotubes. Acta Physica Polonica, 118: 515-518. |
[16] | McCleverty, J. A. (1989). Advanced inorganic chemistry, 5th edition cotton, fa, Wilkinson, G. Nature, 338: 182-182. |
[17] | Becker, L.; Poreda, R. J. and Bunch, T. E. (2000). Fullerenes: An extraterrestrial carbon carrier phase for noble gases. Proceedings of the National Academy of Sciences of the United States of America, 97: 2979-2983. |
[18] | Rosca, I. D.; Watari, F.; Uo, M. and Akasaka, T. (2005). Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon, 43: 3124-3131. |
[19] | Wang, W.; Jiang, C.; Zhu, L.; Liang, N.; Liu, X.; Jia, J.; Zhang, C.; Zhai, S. and Zhang, B. (2014). Adsorption of Bisphenol A to a Carbon Nanotube Reduced Its Endocrine Disrupting Effect in Mice Male Offspring. International Journal of Molecular Science, 15: 15981-15993. |
[20] | Li, Y.; Chen, X. and Gu, N. (2008). Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. Journal of Physics, Chemistry and Botany, 112(51): 16647-16653. |
[21] | Fagan, S. B.; Souza, A. G.; Lima, J. O. G.; Mendes, J.; Ferreira, O. P.; Mazali, I. O.; Alves, O. L. and Dresselhaus, M. S. (2004). 1,2- dichlorobenzene interacting with carbon nanotubes. Nanotechnology Letters, 4: 1285–1288. |
[22] | Labidi, N. S. and Djebaili, A. (2008). Studies of the mechanism of polyvinyl alcohol adsorption on the calcite/water interface in the Presence of sodium oleate. Journal of Minerals and Materials Characterization and Engineering, 7: 147-161. |
[23] | Cruz, E. F.; Zheng, Y.; Torres, E.; Li, W.; Song, W. and Burugapalli, K. (2012). Zeta Potential of Modified Multi-walled Carbon Nanotubes in Presence of poly (vinyl alcohol) Hydrogel. International Journal of Electrochemical Science, 7: 3577–3590. |
[24] | Kouklin, N.; Tzolov, M.; Straus, D.; Yin, A. and Xua, J. M. (2004). Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition. Applied Physics Letters, 85(19): 4463-4465. |
[25] | Dyachkova, T. P.; Melezhyk, A. V.; Gorsky, S. Yu.; Anosova, I. V. and Tkachev, A. G. (2013). Some aspects of functionalization and modification of carbon nanomaterials. Nanosystems: physics, chemistry, mathematics, 4 (5): 605–621. |
[26] | Misra, A.; Tyagi, P. K.; Rai, P. and Misra, D. S. (2007). FTIR Spectroscopy of multiwalled carbon nanotubes: a Simple approachto study the nitrogen doping. Journal of Nanoscience and Nanotechnology, 7 (6): 1820–1823. |
APA Style
Mohammed Nagib Abdel-Ghany Hasaneen, Heba Mahmoud Mohammad Abdel-Aziz, Aya Moheb Omer. (2017). Characterization of Carbon Nanotubes Loaded with Nitrogen, Phosphorus and Potassium Fertilizers. American Journal of Nano Research and Applications, 5(2), 12-18. https://doi.org/10.11648/j.nano.20170502.11
ACS Style
Mohammed Nagib Abdel-Ghany Hasaneen; Heba Mahmoud Mohammad Abdel-Aziz; Aya Moheb Omer. Characterization of Carbon Nanotubes Loaded with Nitrogen, Phosphorus and Potassium Fertilizers. Am. J. Nano Res. Appl. 2017, 5(2), 12-18. doi: 10.11648/j.nano.20170502.11
AMA Style
Mohammed Nagib Abdel-Ghany Hasaneen, Heba Mahmoud Mohammad Abdel-Aziz, Aya Moheb Omer. Characterization of Carbon Nanotubes Loaded with Nitrogen, Phosphorus and Potassium Fertilizers. Am J Nano Res Appl. 2017;5(2):12-18. doi: 10.11648/j.nano.20170502.11
@article{10.11648/j.nano.20170502.11, author = {Mohammed Nagib Abdel-Ghany Hasaneen and Heba Mahmoud Mohammad Abdel-Aziz and Aya Moheb Omer}, title = {Characterization of Carbon Nanotubes Loaded with Nitrogen, Phosphorus and Potassium Fertilizers}, journal = {American Journal of Nano Research and Applications}, volume = {5}, number = {2}, pages = {12-18}, doi = {10.11648/j.nano.20170502.11}, url = {https://doi.org/10.11648/j.nano.20170502.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nano.20170502.11}, abstract = {Carbon nanotubes either single-walled or multiwalled have been a focus in materials research. Carbon nanotubes are tubular structures of nanometer diameter and large length/diameter ratio. The nanotubes may consist of one, tens and hundreds of concentric shells of carbons with adjacent shells separation of ˜0.34 nm and they can have different individual structures, morphologies and properties. Hence, a wide variety of synthetic methods have been developed to produce the desired materials and properties for scientific studies or technological applications. In this study we succeeded to develop a chemical synthetic method that allows us to prepare carbon nanotubes (CNTs) from graphite powder easily and inexpensively at low temperatures (below 70°C) and without applying pressure.}, year = {2017} }
TY - JOUR T1 - Characterization of Carbon Nanotubes Loaded with Nitrogen, Phosphorus and Potassium Fertilizers AU - Mohammed Nagib Abdel-Ghany Hasaneen AU - Heba Mahmoud Mohammad Abdel-Aziz AU - Aya Moheb Omer Y1 - 2017/05/02 PY - 2017 N1 - https://doi.org/10.11648/j.nano.20170502.11 DO - 10.11648/j.nano.20170502.11 T2 - American Journal of Nano Research and Applications JF - American Journal of Nano Research and Applications JO - American Journal of Nano Research and Applications SP - 12 EP - 18 PB - Science Publishing Group SN - 2575-3738 UR - https://doi.org/10.11648/j.nano.20170502.11 AB - Carbon nanotubes either single-walled or multiwalled have been a focus in materials research. Carbon nanotubes are tubular structures of nanometer diameter and large length/diameter ratio. The nanotubes may consist of one, tens and hundreds of concentric shells of carbons with adjacent shells separation of ˜0.34 nm and they can have different individual structures, morphologies and properties. Hence, a wide variety of synthetic methods have been developed to produce the desired materials and properties for scientific studies or technological applications. In this study we succeeded to develop a chemical synthetic method that allows us to prepare carbon nanotubes (CNTs) from graphite powder easily and inexpensively at low temperatures (below 70°C) and without applying pressure. VL - 5 IS - 2 ER -