| Peer-Reviewed

Review of GaN/ZnO Hybrid Structures Based Materials and Devices

Received: 10 May 2018     Accepted: 28 May 2018     Published: 15 June 2018
Views:       Downloads:
Abstract

This paper presents a review of recent advances of Gallium Nitride (GaN) and Zinc Oxide (ZnO) based hybrid structures materials and devices. GaN and ZnO have gained substantial interest in the research area of wide bandgap semiconductors due to their unique electrical, optical and structural properties. GaN and ZnO are important semiconductor materials with applications in blue and ultraviolet (UV) optoelectronics. Both materials have similar physical properties. GaN and ZnO as hybrid material have received much attention due to their unique potential applications. Several potential optical applications are being fabricated based on GaN and ZnO hybrid materials such as optical wave guide, light emitting diodes (LEDs), and laser diodes (LDs). The recent aspects of GaN and ZnO hybrid based devices are presented and discussed.

Published in American Journal of Nano Research and Applications (Volume 6, Issue 2)
DOI 10.11648/j.nano.20180602.11
Page(s) 34-53
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2018. Published by Science Publishing Group

Keywords

GaN, ZnO, Nanostructured, Hybrid, Light Emitting Diodes, Nanowires, Multiple Quantum Wells (MQW), UV

References
[1] I. Khan, S. Khan, R. Nongjai, H. Ahmed, and W. Khan, “Hydrothermal synthesis of zinc oxide powders with controllable morphology,” Optical Materials 35, 1189-1193 (2013).
[2] L. Znaidi, “Sol-gel deposited ZnO thin films: A review,” Materials Science and Engineering: B 174, 18-30 (2010).
[3] H. Xu, H. Wang, Y. Zhang, W. He, M. Zhu, B. Wang, and H. Yan, “Structural and optical properties of gel-combustion synthesized Zr doped ZnO nanoparticles,” Ceramics International 30, 93-97 (2004).
[4] Z. Wang, “Zinc oxide nanostructures: growth, properties and applications,” Journal of Physics: Condensed Matter 16, R829 (2004).
[5] A. Djurisic, A. Ng, and X. Chen, “ZnO nanostructures for optoelectronics: Material properties and device applications,” Progress in Quantum Electronics 34, 191-259 (2010).
[6] Z. Wang and J. Song, “Piezoelectric nanogenerators based on Zinc Oxide nanowire arrays,” Science 312, 242-246 (2006).
[7] P. Wu, J. Zhang, J. Lu, X. Li, C. Wu, R. Sun, L. Feng, Q. Jiang, B. Lu, X. Pan, and Z. Ye, “Instability induced by ultraviolet light in ZnO thin-film transistors,” IEEE Transactions on Electron Devices, 61, 1431-1435 (2014).
[8] L. Li, Y. Zhang, L. Yan, J. Jiang, X. Han, G. Deng, C. Chi, and J. Song, “n-ZnO/p-GaN heterojunction light-emitting diodes featuring a buried polarization-induced tunneling junction,” AIP Adances 6, 125204 (2016).
[9] L. Sin, M. Arshad, M. Fathil, R. Adzhri, M. Nuzaihan, A. Ruslinda, S. Gopinath, and U. Hashim, “Zinc oxide interdigitated electrode for biosensor application,” AIP Conference Proceedings 1733, 020075 (2016).
[10] Y. Yuliah, A. Bahtiar, Fitrilawati, and R. Siregar, “The optical bandgap investigation of PVP-capped ZnO nanoparticles synthesized by sol-gel method,” AIP Conference Proceedings 1712, 050018 (2016).
[11] R. Konenkamp, R. Word, and C. Schegel, “Vertical nanowire light-emitting diode,” Applied Physics Letters 85, 6004-6006 (2004).
[12] S. Mckinstry and P. Marult, “Thin film piezoelectrics for MEMS,” Journal of Electroceramics 12, 7-17 (2004).
[13] Y. Ushio, M. Miyayama and H. Yanagida, “Effects of interface states on gas sensing properties of a CuO/ZnO thin film heterojunction,” Sensors and Actuators B: Chemical 17, 221-226 (1994).
[14] H. Harima, “Raman studies on spintronics materials based on wide bandgap semiconductors,” Journal of Physics: Condensed Matter 16, S5653-S5660 (2004).
[15] J. Xiang, P. Zhu, Y. Masuda, M. Okuya, S. Kaneko, and K. Koumoto, “Flexible solar cell from Zinc Oxide nanocrystalline sheets self assembled by an In-Situ electrodeposition process,” Journal of Nanoscience and Nanotechnology 6, 1797-1801 (2006).
[16] U. Khachar, P. Solanki, R. Choudhary, D. Phase, V. Ganesan, and D. Kuberkar, “Room temperature positive magnetoresistance and field effect studies of manganite-based heterostructure,” Applied Physics A 108, 733-738 (2012).
[17] J. Roh, H. Kim, M. Park, J. Kwak, and C. Lee, “Improved electron injection in all solution processed n-type organic field effect transistors with an inkjet printed ZnO electron injection layer,” Applied Surface Science 420, 100-104 (2017).
[18] M. Zhang, H. Zhang, L. Li, K. Tuokedaerhan, and Z. Jia, “Er-enhanced humidity sensing performance in black ZnO based sensor,” Journal of Alloys and Compounds 744, 364-369 (2018).
[19] L. Zhu, and W. Zeng, “Room-temperature gas sensing of ZnO based gas sensor: A review,” Sensors and Actuators A: Physical 267, 242-261 (2017).
[20] F. Boccuzzi, A. Chiorino, S. Tsubota, and M. Haruta, “An IR study of CO-sensing mechanism on Au/ZnO,” Sensors and Actuators B: Chemical 25, 540-543 (1995).
[21] J. Singh, S. Patil, M. More, D. Joag, R. Tiwari, and O. Srivastava, “Formation of aligned ZnO nanorods on self grown ZnO template and its enhanced field emission characteristics,” Applied Surface Science 256, 6157-6153 (2010).
[22] M. Alvi, A. Al-Ghamdi, and M. Husain, “Field emission studies of CNTs/ZnO nanostructured thin films for display devices,” Physica B: Condensed Matterials 521, 312-316 (2017).
[23] C. Lao, P. Gao, R. Yang, Y. Zhang, Y. Dai and Z. Wang, “Formation of double side teethed nanocombs of ZnO and self catalysis of Zn terminated polar surface,” Chemical Physics Letters 417, 358-362 (2006).
[24] J. Zhou, X. Wu, D. Xiao, M. Zhuo, H. Jin, J. Luo, and Y. Fu, “Deposition of aluminum doped ZnO as electrode for transparent ZnO/glass surface acoustic wave devices,” Surface and Coatings Technology 320, 39-46 (2017).
[25] T. Majumdera, S. Dhara, P. Chakrabortya, K. Debnathb, and S. Mondala, “Advantages of ZnO nanotaper photoanodes in photoelectrochemical cells and graphene quantum dot sensitized solar cell applications,” Journal of Electroanalytical Chemistry 813, 92-101 (2018).
[26] S. Arya, S. Saha, J. Ramirez-Vick, V. Gupta, S. Bhansali, and S. Singh, “Recent advances in ZnO nanostructures and thin films for biosensor applications: Review,” Analytica Chimica Acta 737, 1-21 (2012).
[27] G. Yu, J. Gao, J. Hummenlen, A. Heeger, and F. Wudl, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270, 1789-1791 (1995).
[28] S. Shaheen, C. Brabec, N. Sariciftci, F. Padinger, T. Fromherz, and J. Hummenlen, “2.5% efficient organic plastic solar cells,” Applied Physics Letters 78, 841-844 (2001).
[29] L. Nulhakim and H. Makino, “Change of scattering mechanism and annealing out of defects on Ga-doped ZnO films deposited by radio frequency magnetron sputtering,” Journal of Applied Physics 119, 235302 (2016).
[30] D. Montenegro, A. Souissi, C. Tomas, V. Sanjose, and V. Sallet, “Morphology transitions in ZnO nanorods grown by MOCVD,” Journal of Crystal Growth 359, 122-128 (2012).
[31] N. Oleynik, M. Adam, A. Krtschil, J. Blasing, A. Dadgar, F. Bertram, D. Forster, A. Diez, A. Greiling, M. Seip, J. Christen, and A. Krost, “Metalorganic chemical vapor phase deposition of ZnO with different O-precursors,” Journal of Crystal Growth 248, 14-19 (2003).
[32] V. Litovchenko, A. Evtukh, and A. Grygoriev, “Characterization of GaN nanostructures by electron field and photo field emission,” Opto-Electronics Review 25, 251-262 (2017).
[33] T. Honda, K. Yoshioka, “Fabrication of GaN‐based Schottky-type light-emitting diodes for micropixels in flat‐panel displays,” 7th International Conference on Nitride Semiconductors (ICNS-7) 5, 2225-2227 (2008).
[34] X. Zheng, M. Guidry, H. Li, E. Ahmadi, K. Hestroffer, B. Romanczyk, S. Wienecke, S. Keller, and U. Mishra, “N-polar GaN MIS-HEMTs on sapphire with high combination of power gain cutoff frequency and three-terminal breakdown voltage,” IEEE Electronic Device Letters 37, 77-80 (2016).
[35] H. Chiu, S. Chen, J. Chiu, B. Li, H. Wang, L. Peng, H. Wang, and K. Hsueh, “AlGaN/GaN Schottky barrier diodes on silicon substrates with various Fe doping concentrations in the buffer layers,” Microelectronics Reliability 83, 238-241 (2018).
[36] S. Mohammad and H. Morkoc, “Progress and prospects of group-III nitride semiconductors,” Progress in Quantum Electronics 20, 361-525 (1996).
[37] D. Zhu, D. Wallis, and C. Humphreys, “Prospects of III-nitride optoelectronics grown on Si,” Reports on Progress in Physics 76, 106501 (2013).
[38] A. Fletcher and D. Nirmal, “A survey of gallium nitride HEMT for RF and high power applications,” Superlattices and Microstructures 109, 519-537 (2017).
[39] B. Baliga, “Gallium nitride devices for power electronic applications,” Semiconductor Science and Technology 28, 074011 (2013).
[40] S. Pearton and F. Ren, “GaN electronics,” Advanced Materials 12, 1571-1580 (2000).
[41] N. Fu, E. Li, Z. Cui, D. Ma, W. Wang, Y. Zhang, S. Song, and J. Lin, “The electronic properties of phosphorus doped GaN nanowires from first principle calculations,” Journal of Alloys Compound 596, 92-97 (2014).
[42] Y. Wang, R. Wang, Y. Li, Y. Zhang, M. Zhu, B. Wang, and H. Yan, “From powder to nanowire: a simple and environmentally friendly strategy for optical and electrical GaN nanowire films,” CrystEngComm 15, 1626-1634 (2013).
[43] S. Pearton, B. Kang, S. Kim, F. Ren, B. Gila, C. Abernathy, J. Lin, and S. Chu, “GaN based diodes and transistors for chemical, gas, biological and pressure sensing,” Journal of Physics: Condensed Matter 16, R961-R994 (2004).
[44] M. Neuberger, T. Zimmermann, P. Benkart, M. Kunze, I. Daumiller, A. Dadgar, A. Krost, and E. Kohn, “GaN based piezo sensors,” Device Research Conference 4, 5-46 (2004).
[45] B. Kang, J. Kim, S. Jang, F. Ren, J. Johnson, R. Therrien, P. Rajagopal, J. Roberts, E. Piner, K. Linthicum, S. Chu, K. Baik, B. Gila, C. Abernathy, and S. Pearton, “Capacitance pressure sensor based on GaN high electron mobility transistor on Si membrane,” Applied Physics Letters 86, 253502 (2005).
[46] S. Pearton, F. Ren, E. Patrick, M. Law, and A. Polyakov, “Review-Ionizing radiation damage effects on GaN devices,” ECS Journal of Solid State Science and Technology 5, Q35-Q60 (2016).
[47] S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nature Materials 5, 887-892 (2006).
[48] S. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. Pan, C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. Speck, and S. Nakamura, “Development of gallium nitride based light emitting diodes (LEDs) and laser diodes for energy efficient lighting and displays,” Acta Materialia 61, 945-951 (2013).
[49] M. Zhang, Q. Jiang, F. Hou, Z. Wang, and G. Pan, “Fabrication of high aspect ratio gallium nitride nanostructures by photochemical etching for enhanced photocurrent and photoluminescence property,” Scripta Materialia 146, 115-118 (2018).
[50] Y. Lin, W. Liu, C. Chang, C. Chung, and Y. Chen, “Internal quantum efficiency enhancement by relieving compressive stress of GaN based LED,” IEEE Photonics Technology Letters 26, 1793-1796 (2014).
[51] N. Park, M. Oh, Y. Na, W. Cheong, and H. Kim, “Sputter deposition of Sn-doped ZnO/Ag/Sn-doped ZnO transparent contact layer for GaN LED applications,” Materials Letters 180, 72-76 (2016).
[52] C. Chen, W. Chen, C. Chang, Y. Lee, and W. Liu, “Implementation of light extraction improvements of GaN based light emitting diodes with specific textured sidewalls,” Optics and Laser Technology 101, 172-176 (2018).
[53] X. He, D. Zhao, D. Jiang, J. Zhu, P. Chen, Z. Liu, L. Le, J. Yang, X. Li, and J. Liu, “GaN high electron mobility transistors with AlInN back barriers,” Journal of Alloys and Compounds 662, 16-19 (2016).
[54] M. Khan, J. Kkuznia, D. Olson, and M. Blasingame, “Schottky barrier photodetector based on Mg‐doped p‐type GaN films,” Applied Physics Letters 63, 2455 (1993).
[55] Y. Su, Y. Chiou, F. Juang, S. Chang, “GaN and InGaN metal semiconductor metal photodetectors with different Schottky contact metals,” Japanese Journal of Applied Physics 40, 2996 (2001).
[56] J. Seo, C. Caneau, R. Bhat, and I. Adesida, “Application of indium tin oxide with improved transmittance at 1.3 mu for MSM photodetectors,” IEEE Photonics Technology Letters 5, 1313-1315 (1993).
[57] L. Ravikiran, K. Radhakrishnan, N. Dharmarasu, M. Agrawal, Z. Wang, A. Bruno, C. Soci, T. Lihuang, and A. Siong, “Responsivity drop due to conductance modulation in GaN metal semiconductor metal Schottky based UV photodetectors on Si (111),” Semiconductor Science and Technology 31, 095003 (2016).
[58] S. Yoon, J. Lee, and T. Seong, “Inhomogeneity of barrier heights of transparent Ag/ITO Schottky contacts on n-type GaN annealed at different temperatures,” Journal of Alloys and Compounds 742, 66-71 (2018).
[59] T. Flack, B. Pushpakaran, and S. Bayne, “GaN technology for power electronic applications: a review,” Journal of Electronic Materials 45, 2673 (2016).
[60] T. Wang, B. Wang, A. Haque, M. Snure, E. Heller, and N. Glavin, “Mechanical stress effects on electrical breakdown of freestanding GaN thin films,” Microelectronics Reliability 81, 181-185 (2018).
[61] S. Ghosh, S. Dinara, M. Mahata, S. Das, P. Mukhopadhyay, S. Jana, and D. Biswas, “On the different origins of electrical parameter degradation in reverse bias stressed AlGaN/GaN HEMTs,” Physica Status Solidi A 213, 1559-1563 (2016).
[62] R. Long, A. Hazeghi, M. Gunji, Y. Nishi, and P. McIntyre, “Temperature dependent capacitance voltage analysis of defects in Al2O3 gate dielectric stacks on GaN,” Applied Physics Letters 101, 1-5 (2012).
[63] A. Chakraborty, S. Ghosh, P. Mukhopadhyay, S. Das, A. Bag, and D. Biswas, “Effect of trapped charge in AlGaN/GaN and AlGaN/InGaN/GaN heterostructure by temperature dependent threshold voltage analysis,” Superlattices and Microstructures 113, 147-152 (2018).
[64] M. Reshchikov, G. Yi, and B. Weasels, “Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities,” Physics Review B 59, 13176-13183 (1999).
[65] H. Cho, J. Lee, G. Yang, and C. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Applied Physics Letters 79, 215-217 (2001).
[66] R. Colby, Z. Liang, I. Wildeson, D. Ewoldt, T. Sands, R. Garcia, and E. Stach, “Dislocation filtering in GaN nanostructures,” Nano 10, 1568-1573 (2010).
[67] C. Xu, S. Chung, M. Kim, D. E. Kim, B. Chon, S. Hong, and T. Joo, “Doping of Si into GaN nanowires and optical properties of resulting composites,” Journal of Nanoscience and Nanotechnology 5, 530 (2005).
[68] J. Arbiol, S. Estrad, J. Prades, A. Cierea, F. Furtmayr, C. Stark, A. Laufer, M. Stutzmann, M. Eickhoff, M. Gass, A. Bleloch, F. Peir, and J. Morante, “Triplet win domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc blende like stacking,” Nanotechnology 20, 145704 (2009).
[69] R. Wu, G. Peng, L. Liu, Y. Feng, Z. Huang, and Q. Wu, “Cu-doped GaN: a dilute magnetic semiconductor from first principles study,” Applied Physics Letters 89, 062505 (2006).
[70] K. Stamplecoskie, L. Ju, S. Farvid, and P. Radovanovic, “General control of transition metal doped GaN nanowire growth: toward understanding the mechanism of dopant incorporation,” Nano Letters 8, 2674-2681 (2008).
[71] S. Zhou, “Near UV photoluminescence of Hg-doped GaN nanowires,” Physica E: Low-dimensional Systems and Nanostructures 33, 394-397 (2006).
[72] S. Zhou, “Fabrication and PL of Al-doped gallium nitride nanowires,” Physics Letters 357, 374-377 (2006).
[73] E. Li, B. Wu, S. Lv, Z. Cui, D. Ma, and W. Shi, “Field emission properties of Ge-doped GaN nanowires,” Journal of Alloys and Compounds 681, 324-329 (2016).
[74] Z. Cui, X. Ke, E. Li, and T. Liu, “Electronic and optical properties of titanium doped GaN nanowires,” Materials and Design 96, 409-415 (2016).
[75] E. Li, J. Yan, D. Ma, Z. Cui, and Q. Qi, “Synthesis and field emission performance for P-doped GaN NWs,” Superlattices and Microstructures 115, 53-58 (2018).
[76] S. Chang, R. Chuang, S. Chang, Y. Chiou, and C. Lu, “MBE n-ZnO/MOCVD p-GaN heterojunction light emitting diode,” Thin Solid Films 517, 5054-5056 (2009).
[77] F. Tuomisto, D. Look, and G. Farlow, “Defect studies in electron irradiated ZnO and GaN,” Physica B 401-402, 604-608 (2007).
[78] F. Tuomisto, “Vacancy profiles and clustering in light ion implanted GaN and ZnO,” Applied Surface Science 255, 54-57 (2008).
[79] E. Wendler, W. Wesch, A. Yu. Azarov, N. Catarino, A. Redondo-Cubero, E. Alves, and K. Lorenz, “Comparison of low and room temperature damage formation in Ar ion implanted GaN and ZnO,” Nuclear Instruments and Methods in Physics Research B 307, 394-398 (2013).
[80] S. Galagali, N. Sankeshwar, and B. Mulimani, “Thermoelectric transport in ZnO and GaN nanowires,” Journal of Physics and Chemistry of Solids 83, 8-17 (2015).
[81] D. Reynolds, D. Look, and B. Jogai, “Optically pumped ultraviolet lasing from ZnO,” Solid State Communications 99, 873 (1996).
[82] D. Bagnall, Y. Chen, Z. Zhu, T. Yao, S. Koyama, M. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Applied Physics Letters 70, 873 (1997).
[83] S. Lee and D. Kim, “Characteristics of ZnO/GaN heterostructure formed on GaN substrate by sputtering deposition of ZnO,” Materials Science and Engineering B 137, 80-84 (2007).
[84] A. Wadeasa, O. Nur, and M. Willander, “The effect of the interlayer design on the electroluminescence and electrical properties of n-ZnO nanorod/p-type blended polymer hybrid light emitting diodes,” Nanotechnology 20, 80-84 (2009).
[85] M. Shin, M. Kim, G. Lee, H. Ahn, S. Yi, and D. Ha, “A GaN nanoneedle inorganic/organic heterojunction structure for optoelectronic devices,” Materials Letters 91, 191-194 (2013).
[86] P. Reyes, C. Ku, Z. Duan, Y. Xu, E. Garfunkel, and Y. Lu, “Reduction of persistent photoconductivity in ZnO thin film transistor based UV photodetector,” Applied Physics Letters 101, 031118 (2012).
[87] S. Yang, S. Tongay, S. Li, J. Xia, J. Wu, J. Li, E. Garfunkel, and Y. Lu, “Environmentally stable/self-powered ultraviolet photodetectors with high sensitivity,” Applied Physics Letters 103, 143503 (2013).
[88] X. Li, W. Liu, P. Li, J. Song, Y. An, J. Shen, S. Wang, and D. Guo, “ A self powered nano-photodetector based on PFH/ZnO nanorods organic/inorganic heterojunction,” Results in Physics 8, 468-472 (2018).
[89] Z. Wei, H. Almakrami, G. Lin, E. Agar, and F. Liu, “An organic-inorganic hybrid photoelectrochemical storage cell for improved solar energy storage,” Electrochimica Acta 263, 570-575 (2018).
[90] Y. Vaynzof, D. Kabra, L. Zhao, P. Ho, A. Wee, and R. Friend, “Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices,” Applied Physics Letters 97, 033309 (2010).
[91] J. Chang, J. Rhee, S. Im, Y. Lee, H. Kim, S. Seok, M. Nazeeruddin, and M. Gratzel, “High performance nanostructured Inorganic-Organic heterojunction solar cells,” Nano Letters 10, 2609 (2010).
[92] V. Agranovich, Y. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chemical Review 111, 5179-5214 (2011).
[93] Q. Gu, M. Yuan, S. Ma, and G. Sun, “Structures and photoluminescence properties of organic-inorganic hybrid materials based on layered rare earth hydroxides,” Journal of Luminescence 192, 1211-1219 (2017).
[94] K. Yan, J. Qin, Z. Liu, B. Dong, J. Chi, W. Gao, J. Lin, Y. Chai, and C. Liu, “Organic-inorganic hybrids-directed ternary NiFeMoS anemone like nanorods with scaly surface supported on nickel foam for efficient overall water splitting,” Chemical Engineering Journal 334, 922-931 (2018).
[95] L. Mazzocchetti, E. Cortecchia, and M. Scandola, “Organic-Inorganic hybrids as transparent coatings for UV and X-ray shielding,” ACS Applied Materials and Interfaces 1, 726-734 (2009).
[96] X. Chu, M. Guan, L. Li, Y. Zhang, F. Zhang, Y. Li, Z. Zhu, B. Wang, and Y. Zeng, “Improved efficiency of Organic/Inorganic hybrid near-infrared light upconverter by device optimization,” ACS Applied Materials and Interfaces 4, 4976-4980 (2012).
[97] J. Weickert, F. Auras, T. Bein, and L. Schmidt-Mende, “Characterization of interfacial modifiers for hybrid solar cells,” Journal of Physical Chemistry C 115, 15081-15088 (2011).
[98] M. Krumm, F. Pawlitzek, J. Weickert, L. Schmidt-Mende, and S. Polarz, “Temperature stable and optically transparent thin film Zinc Oxide aerogel electrodes As model systems for 3D interpenetrating Organic-Inorganic heterojunction solar cells,” ACS Applied Materials & Interfaces 4, 6522-6529 (2012).
[99] K. Chang, Y. Chen, K. Chang, M. Shellaiah, and K. Sun, “Junction model and transport mechanism in hybrid PEDOT:PSS/n-GaAs solar cells,” Organic Electronics 51, 435-441 (2017).
[100] J. Na, M. Kitamura, M. Arita, and Y. Arakawa, “Hybrid p-n junction light emitting diodes based on sputtered ZnO and organic semiconductors,” Applied Physics Letters 95, 253303 (2009).
[101] M. Bernius, M. Inbasekaran, J. O’Brien, and W. Wu, “Progress with Light Emitting Polymers,” Journal of the American Chemical Society 12, 1737, (2000).
[102] J. Mei, Y. Diao, A. Appleton, L. Fang, and Z. Bao, “Integrated materials design of organic semiconductors for field effect transistors,” Journal of America Chemical Society 135, 6724-6746 (2013).
[103] S. Gelinas, A. Rao, A. Kumar, S. Smith, A. Chin, J. Clark, T. van der Poll, G. Bazan, and R. Friend, “Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes,” Science 343, 512-516 (2014).
[104] A. Mishra and P. Bauerle, “Small molecule organic semiconductors on the move: Promises for future solar energy technology,” Angewandte Chemie 51, 2020-2067 (2012).
[105] V. Coropceanu, J. Cornil, D. Filho, Y. Olivier, R. Silbey, and J. Bredas, “Charge transport in organic semiconductors,” Chemical Reviews 107, 926-952 (2007).
[106] J. Kwon, K. Son, J. Jung, T. Kim, M. Ryu, K. Park, B. Yoo, J. Kim, Y. Lee, K. Park, S. Lee, and J. Kim, “Bottom gate gallium indium zinc oxide thin film transistor array for high-resolution AMOLED display,” IEEE Electron Device Letters 29, 1309-1311 (2008).
[107] H. Kim, S. Nam, J. Jeong, S. Lee, J. Seo, H. Han, and Y. Kim, “Organic solar cells based on conjugated polymers: history and recent advances,” Korean Journal of Chemical Engineering 31, 1095-1104 (2014).
[108] S. Yoon, S. Lou, S. Loser, J. Smith, L. Chen, A. Facchetti, and T. Marks, “Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells,” Nano Letters 12, 6315-6321 (2012).
[109] S. Woo, W. H. Kim, H. Kim, Y. Yi, H. Lyu, and Y. Kim, “8.9% single stack inverted polymer solar cells with electron rich polymer nanolayer modified inorganic electron collecting buffer layers,” Advanced Energy Materials 4, 1301692 (2014).
[110] D. Chaudhary, A. Ghosh, R. Thangavel, and L. Kumar, “Bulk heterojunction hybrid solar cells with non-toxic, earth abundant stannite phase CuZn2AlS4 nanocrystals,” Thin Solid Films 649, 202-209 (2018).
[111] S. Ratnasingam and S. Collins, “Study of the photodetector characteristics of a camera for color constancy in natural scenes,” Journal of the Optical Society of America A 27, 286-294 (2010).
[112] S. Gunapala, S. Bandara, A. Singh, J. Liu, S. Rafol, E. Luong, J. Mumolo, N. Tran, D. Ting, J. Vincent, C. Shott, J. Long, and P. LeVan, “640×486 long-wavelength two color GaAs/AlGaAs quantum well infrared photodetector (QWIP) focal plane array camera,” IEEE Transactions on Electron Devices 47, 963-971 (2000).
[113] D. Baierl, B. Fabel, P. Gabos, L. Pancheri, P. Lugli, and G. Scarpa, “Solution-processable inverted organic photodetectors using oxygen plasma treatment,” Organic Electron 11, 1199-1206 (2010).
[114] E. Saracco, B. Bouthinon, J. Verilhac, C. Celle, N. Chevalier, D. Mariolle, O. Dhez, and J. Simonato, “Work function tuning for high-performance solution-processed organic photodetectors with inverted structure,” Advanced Materials 25, 6534-6538 (2013).
[115] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide Perovskites as visible light sensitizers for photovoltaic cells,” Journal of the American Chemical Society 131, 6050-6051 (2009).
[116] L. Qiu, L. Ono, and Y. Qi, “Advances and challenges to the commercialization of organic-inorganic halide perovskite solar cell technology,” Materials Today Energy 7, 169-189 (2018).
[117] M. Lee, J. Teuscher, T. Miyasaka, T. Murakami, and H. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide Perovskites,” Science 338, 643-647 (2012).
[118] J. Noh, S. Im, J. Heo, T. Mandal, and S. Seok, “Chemical management for colorful, efficient, and stable Inorganic-Organic hybrid nanostructured solar cells,” Nano Letters 13, 1764-1769 (2013).
[119] Y. Shirahata, K. Tanaike, T. Akiyama, K. Fujimoto, A. Suzuki, J. Balachandran, and T. Oku, “Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells,” AIP Conference Proceedings 1709, 020018 (2016).
[120] J. Bortoleto, M. Chaves, A. Rosa, E. Silva, S. Durrant, L. Trino, and P. Filho, “Growth evolution of self-textured ZnO films deposited by magnetron sputtering at low temperatures,” Applied Surface Science 334, 210-215 (2015).
[121] M. Sessolo and H. Bolink, “Hybrid organic-inorganic light emitting diodes,” Advanced Materials 23, 1829-1845 (2011).
[122] K. Morii, M. Ishida, T. Takashima, T. Shimoda, Q. Wang, M. Nazeeruddin, and M. Gratzel, “Encapsulation-free hybrid organic-inorganic light emitting diodes,” Applied Physics Letters 89, 183510 (2006).
[123] J. Ryan, E. Palomares, and E. Ferrero, “Towards low-temperature preparation of air-stable hybrid light-emitting diodes,” Journal of Materials Chemistry 21, 4774 (2011).
[124] M. Takada, T. Kobayashi, T. Nagase, and H. Naito, “Inverted organic light emitting diodes using different transparent conductive oxide films as a cathode,” Japanese Journal of Applied Physics 55, 3-6 (2016).
[125] B. Lee, E. Jung, Y. Nam, M. Jung, J. Park, S. Lee, H. Choi, S. Ko, N. Shin,Y. Kim, S. Kim, J. Kim, H. Shin, S. Cho, and M. Song, “Amine based polar solvent treatment for highly efficient inverted polymer solar cells,” Advanced 26, 494-500 (2014).
[126] A. Nirmal, A. Kyaw, W. Jianxiong, K. Dev, X. Sun, and H. Demir, “Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals,” IEEE Journal of Photovoltaics 7, 545-549 (2017).
[127] J. Young, J. Kim, J. Roh, H. Kim, and C. Lee, “Efficiency improvement of organic photovoltaics adopting Li- and Cd-doped ZnO electron extraction layers,” IEEE Journal of Photovoltaics 6, 930-933 (2016).
[128] J. Jeong, S. Nam, H. Kim, and Y. Kim, “Inverted organic photodetectors with ZnO electron collecting buffer layers and polymer bulk heterojunction active layers,” IEEE Journal of selected Topics in Quantum Electronics 20, 1480-1482 (2014).
[129] H. Kim, M. Ryu, J. Youn, A. Yusoff, and J. Jang, “Photomask effect in organic solar cells with ZnO cathode buffer layer,” IEEE Electronic Device Letters 33, 1480-1482 (2012).
[130] M. Takada, S. Furuta, T. Kobayashi, T. Nagase, T. Shinagawa, M. Izaki, and H. Naito, “Inverted organic light-emitting diodes with an electrochemically deposited zinc oxide electron injection layer,” Journal of Applied Physics 120, 185501 (2016).
[131] P. Biswas, S. Baek, S. Lee, J. Kim, J. Park, S. Lee, T. Lee, and J. Myoung, “Oxygen vacancy induced red light emission from flexible inorganic micropatterned p-CuO/n-ZnO heterojunction light emitting diode,” Applied Physics Letters 109, 171102 (2016).
[132] T. Thao, D. Long, V. Truong, and N. Dinh, “Preparation and characterization of nanorod-like TiO2 and ZnO films used for charge transport buffer layers in P3HT based organic solar cells,” AIP Conference Proceedings 1763, 030002 (2016).
[133] X. Guo, L. Tang, J. Xiang, R. Ji, K. Zhang, S. Lai, J. Zhao, J. Kong, and S. Lau, “Solution processable organic/inorganic hybrid ultraviolet photovoltaic detector,” AIP Advances 6, 055318 (2016).
[134] A. Abliz, J. Wang, L. Xu, D. Wan, L. Liao, C. Ye, C. Liu, C. Jiang, H. Chen, and T. Guo, “Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO:H layer,” Applied Physics Letters 108, 213501 (2016).
[135] N. Azhar, A. Shafura, I. Affendi, S. Shariffudin, I. Saurdi, S. Alrokayan, H. Khan, and M. Rusop, “Investigation of electrical and optical properties of MEH-PPV: ZnO nanocomposite films for OLED applications,” AIP Conference Proceedings 1733, 020044 (2016).
[136] Y. Wu, C. Liao, P. Lee, Y. Liu, C. Liu, and C. Liu, “Organic/inorganic F8T2/GaN light emitting heterojunction,” Organic Electronics 49, 64-68 (2017).
[137] M. Forsberg, E. Serban, E. Alexandra, C. Hsiao, M. Junaid, J. Birch, and G. Pozina, “Near band gap luminescence in hybrid organic-inorganic structures based on sputtered GaN nanorods,” Scientific Reports 7, 1-7 (2017).
[138] P. Kumar, S. Guha, F. Shahedipour-Sandvik, and K. Narayan, “Hybrid n-GaN and polymer interfaces: Model systems for tunable photodiodes,” Organic Electronics 14, 2818-2825 (2013).
[139] M. Shin, D. Gwona, C. Lee, G. Lee, I. Jeon, H. Ahn, S. Yi, and D. Ha, “Hybrid device based on GaN nanoneedles and MEH-PPV/PEDOT:PSS polymer,” Materials Research Bulletin 68, 326-330 (2015).
Cite This Article
  • APA Style

    Ahmed Mohammed Nahhas. (2018). Review of GaN/ZnO Hybrid Structures Based Materials and Devices. American Journal of Nano Research and Applications, 6(2), 34-53. https://doi.org/10.11648/j.nano.20180602.11

    Copy | Download

    ACS Style

    Ahmed Mohammed Nahhas. Review of GaN/ZnO Hybrid Structures Based Materials and Devices. Am. J. Nano Res. Appl. 2018, 6(2), 34-53. doi: 10.11648/j.nano.20180602.11

    Copy | Download

    AMA Style

    Ahmed Mohammed Nahhas. Review of GaN/ZnO Hybrid Structures Based Materials and Devices. Am J Nano Res Appl. 2018;6(2):34-53. doi: 10.11648/j.nano.20180602.11

    Copy | Download

  • @article{10.11648/j.nano.20180602.11,
      author = {Ahmed Mohammed Nahhas},
      title = {Review of GaN/ZnO Hybrid Structures Based Materials and Devices},
      journal = {American Journal of Nano Research and Applications},
      volume = {6},
      number = {2},
      pages = {34-53},
      doi = {10.11648/j.nano.20180602.11},
      url = {https://doi.org/10.11648/j.nano.20180602.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nano.20180602.11},
      abstract = {This paper presents a review of recent advances of Gallium Nitride (GaN) and Zinc Oxide (ZnO) based hybrid structures materials and devices. GaN and ZnO have gained substantial interest in the research area of wide bandgap semiconductors due to their unique electrical, optical and structural properties. GaN and ZnO are important semiconductor materials with applications in blue and ultraviolet (UV) optoelectronics. Both materials have similar physical properties. GaN and ZnO as hybrid material have received much attention due to their unique potential applications. Several potential optical applications are being fabricated based on GaN and ZnO hybrid materials such as optical wave guide, light emitting diodes (LEDs), and laser diodes (LDs). The recent aspects of GaN and ZnO hybrid based devices are presented and discussed.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Review of GaN/ZnO Hybrid Structures Based Materials and Devices
    AU  - Ahmed Mohammed Nahhas
    Y1  - 2018/06/15
    PY  - 2018
    N1  - https://doi.org/10.11648/j.nano.20180602.11
    DO  - 10.11648/j.nano.20180602.11
    T2  - American Journal of Nano Research and Applications
    JF  - American Journal of Nano Research and Applications
    JO  - American Journal of Nano Research and Applications
    SP  - 34
    EP  - 53
    PB  - Science Publishing Group
    SN  - 2575-3738
    UR  - https://doi.org/10.11648/j.nano.20180602.11
    AB  - This paper presents a review of recent advances of Gallium Nitride (GaN) and Zinc Oxide (ZnO) based hybrid structures materials and devices. GaN and ZnO have gained substantial interest in the research area of wide bandgap semiconductors due to their unique electrical, optical and structural properties. GaN and ZnO are important semiconductor materials with applications in blue and ultraviolet (UV) optoelectronics. Both materials have similar physical properties. GaN and ZnO as hybrid material have received much attention due to their unique potential applications. Several potential optical applications are being fabricated based on GaN and ZnO hybrid materials such as optical wave guide, light emitting diodes (LEDs), and laser diodes (LDs). The recent aspects of GaN and ZnO hybrid based devices are presented and discussed.
    VL  - 6
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Electrical Engineering, Faculty of Engineering and Islamic Architecture, Umm Al Qura University, Makkah, Saudi Arabia

  • Sections