The reliability of four force fields developed for 1-alkyl-3-methylimidazolium bis¬(tri¬fluoro¬methylsulfonyl)imide ionic liquids are compared to an ab inito molecular dynamics simulation regarding structural properties. Except the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion as well as the intramolecular potential surface of the anion in solution, structural properties are reproduced very well by all investigated force fields. Most recommended can be the force field developed by Canongia Lopes and Pádua because it reproduces best the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion.
Published in |
American Journal of Nano Research and Applications (Volume 2, Issue 6-1)
This article belongs to the Special Issue Advanced Functional Materials |
DOI | 10.11648/j.nano.s.2014020601.13 |
Page(s) | 19-26 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Ionic Liquids, Classical Molecular Dynamics Simulations, Ab Initio Molecular Dynamics Simulations
[1] | Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772–3789. |
[2] | Plechkova, N. V.; Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123–150. |
[3] | Walden, P. Bull. Acad. Sci. St Petersburg 1914, 405–422. |
[4] | Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1992, 965–967. |
[5] | Li, C.; Lin, J. J. Mater. Chem. 2010, 20, 6831–6847. |
[6] | Dupont, J.; Scholten, J. D. Chem. Soc. Rev. 2010, 39, 1780–1804. |
[7] | Zahn, S.; Uhlig, F.; Thar, J.; Spickermann, C.; Kirchner, B. Angew. Chem. Int. Ed. 2008, 47, 3639–3641. |
[8] | Zahn, S.; Bruns, G.; Thar, J.; Kirchner, B. Phys. Chem. Chem. Phys. 2008, 10, 6921–6924. |
[9] | Zahn, S.; Kirchner, B. J. Phys. Chem. A 2008, 112, 8430–8435. |
[10] | Izgorodina, E. I.; Bernard, U. L.; MacFarlane, D. R. J. Phys. Chem. A 2009, 113, 7064–7072. |
[11] | Kohanoff, J.; Pinilla, C.; Youngs, T. G. A.; Artacho, E.; Soler, J. M. J. Chem. Phys. 2011, 135, 154505. |
[12] | Grimme, S.; Hujo, W.; Kirchner, B. Phys. Chem. Chem. Phys. 2012, 14, 4875–4883. |
[13] | Zahn, S.; MacFarlane, D. R.; Izgorodina, E. I. Phys. Chem. Chem. Phys. 2013, 15, 13664–13675. |
[14] | Del Pópolo, M.; Lynden-Bell, R.; Kohanoff, J. J. Phys. Chem. B 2005, 109, 5895–5902. |
[15] | Bühl, M.; Chaumont, A.; Schurhammer, R.; Wipff, G. J. Phys. Chem. B 2005, 109, 18591–18599. |
[16] | Prado, C. E. R.; Pópolo, M. G. D.; Youngs, T. G. A.; Kohanoff, J.; and, R. M. L.-B. Mol. Phys. 2006, 104, 2477–2483. |
[17] | Bhargava, B.; Balasubramanian, S. Chem. Phys. Lett. 2006, 417, 486–491. |
[18] | Ghatee, M. H.; Ansari, Y. J. Chem. Phys. 2007, 126, 154502. |
[19] | Bhargava, B. L.; Balasubramanian, S. J. Phys. Chem. B 2007, 111, 4477–4487. |
[20] | Bagno, A.; D’Amico, F.; Saielli, G. ChemPhysChem 2007, 8, 873–881. |
[21] | Bhargava, B. L.; Balasubramanian, S. J. Phys. Chem. B 2008, 112, 7566–7573. |
[22] | Bhargava, B. L.; Saharay, M.; Balasubramanian, S. Bull. Mater. Sci. 2008, 31, 327–334. |
[23] | Spickermann, C.; Thar, J.; Lehmann, S. B. C.; Zahn, S.; Hunger, J.; Buchner, R.; Hunt, P. A.; Welton, T.; Kirchner, B. J. Chem. Phys. 2008, 129, 104505. |
[24] | Thar, J.; Brehm, M.; Seitsonen, A. P.; Kirchner, B. J. Phys. Chem. B 2009, 113, 15129–15132. |
[25] | Zahn, S.; Thar, J.; Kirchner, B. J. Chem. Phys. 2010, 132, 124506. |
[26] | Mallik, B. S.; Siepmann, J. I. J. Phys. Chem. B 2010, 114, 12577–12584. |
[27] | Krekeler, C.; Dommert, F.; Schmidt, J.; Zhao, Y. Y.; Holm, C.; Berger, R.; Delle Site, L. Phys. Chem. Chem. Phys. 2010, 12, 1817–1821. |
[28] | Zahn, S.; Wendler, K.; Delle Site, L.; Kirchner, B. Phys. Chem. Chem. Phys. 2011, 13, 15083–15093. |
[29] | Wendler, K.; Zahn, S.; Dommert, F.; Berger, R.; Holm, C.; Kirchner, B.; Delle Site, L. J. Chem. Theory Comput. 2011, 7, 3040–3044. |
[30] | Brüssel, M.; Brehm, M.; Voigt, T.; Kirchner, B. Phys. Chem. Chem. Phys. 2011, 13, 13617–13620. |
[31] | Brüssel, M.; Brehm, M.; Pensado, A. S.; Malberg, F.; Ramzan, M.; Stark, A.; Kirchner, B. Phys. Chem. Chem. Phys. 2012, 14, 13204–13215. |
[32] | Pensado, A. S.; Brehm, M.; Thar, J.; Seitsonen, A. P.; Kirchner, B. ChemPhysChem 2012, 13, 1845–1853. |
[33] | Wendler, K.; Brehm, M.; Malberg, F.; Kirchner, B.; Delle Site, L. J. Chem. Theory Comput. 2012, 8, 1570–1579. |
[34] | Brehm, M.; Weber, H.; Pensado, A. S.; Stark, A.; Kirchner, B. Phys. Chem. Chem. Phys. 2012. |
[35] | Zhang, Y.; Maginn, E. J. J. Phys. Chem. B 2012, 116, 10036–10048. |
[36] | Bodo, E.; Sferrazza, A.; Caminiti, R.; Mangialardo, S.; Postorino, P. J. Chem. Phys. 2013, 139, 144309. |
[37] | Hollóczki, O.; Kelemen, Z.; Könczöl, L.; Szieberth, D.; Nyulászi, L.; Stark, A.; Kirchner, B. Chem.Phys.Chem. 2013, 14, 315–320. |
[38] | Hollóczki, O.; Firaha, D. S.; Friedrich, J.; Brehm, M.; Cybik, R.; Wild, M.; Stark, A.; Kirchner, B. J. Phys. Chem. B 2013, 117, 5898–5907. |
[39] | Firaha, D. S.; Kirchner, B. J. Chem. Eng. Data 2014, DOI: 10.1021/je500166d. |
[40] | Thomas, M.; Brehm, M.; Hollóczki, O.; Kelemen, Z.; Nyulászi, L.; Pasinszki, T.; Kirchner, B. J. Chem. Phys. 2014, 141, 024510. |
[41] | Thomas, M.; Brehm, M.; Hollóczki, O.; Kirchner, B. Chem. Eur. J. 2014, 20, 1622–1629. |
[42] | Payal, R. S.; Balasubramanian, S. Phys. Chem. Chem. Phys. 2014, 16, 17458–17465. |
[43] | Gabl, S.; Schröder, C.; Steinhauser, O. J. Chem. Phys. 2012, 137, 094501. |
[44] | Hanke, C. G.; Price, S. L.; Lynden-Bell, R. M. Mol. Phys. 2001, 99, 801–809. |
[45] | Hunt, P. A. Mol. Simul. 2006, 32, 1–10. |
[46] | Pádua, A. A. H.; Costa Gomes, M. F.; Canongia Lopes, J. N. A. Acc. Chem. Res. 2007, 40, 1087–1096. |
[47] | Wang, Y.; Jiang, W.; Yan, T.; Voth, G. A. Acc. Chem. Res. 2007, 40, 1193–1199. |
[48] | Lynden-Bell, R. M.; Del Pópolo, M. G.; Youngs, T. G. A.; Kohanoff, J.; Hanke, C. G.; Harper, J. B.; Pinilla, C. C. Acc. Chem. Res. 2007, 40, 1138–1145. |
[49] | Maginn, E. J. Acc. Chem. Res. 2007, 40, 1200–1207. |
[50] | Bhargava, B. L.; Balasubramanian, S.; Klein, M. L. Chem. Commun. 2008, 3339–3351. |
[51] | Kirchner, B. Top. Curr. Chem. 2009, 290, 213–262. |
[52] | Borodin, O. J. Phys. Chem. B 2009, 113, 11463–11478. |
[53] | Maginn, E. J. J. Phys.: Condens. Matter 2009, 21, 373101. |
[54] | Dommert, F.; Wendler, K.; Berger, R.; Delle Site, L.; Holm, C. ChemPhysChem 2012, 13, 1625–1637. |
[55] | Canongia Lopes, J. N.; Deschamps, J.; Pádua, A. A. H. J. Phys. Chem. B 2004, 108, 2038–2047. |
[56] | Canongia Lopes, J. N.; Deschamps, J.; Pádua, A. A. H. J. Phys. Chem. B 2004, 108, 11250–11250. |
[57] | Canongia Lopes, J. N.; Pádua, A. A. H. J. Phys. Chem. B 2004, 108, 16893–16898. |
[58] | Canongia Lopes, J. N.; Pádua, A. A. H. J. Phys. Chem. B 2006, 110, 19586–19592. |
[59] | Canongia Lopes, J. N.; Pádua, A. A. H.; Shimizu, K. J. Phys. Chem. B 2008, 112, 5039–5046. |
[60] | Shimizu, K.; Almantariotis, D.; Costa Gomes, M. F.; Pádua, A. A. H.; Canongia Lopes, J. N. J. Phys. Chem. B 2010, 114, 3592–3600. |
[61] | Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 1225–11236. |
[62] | Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179. |
[63] | Köddermann, T.; Paschek, D.; Ludwig, R. ChemPhysChem 2007, 8, 2464–2470. |
[64] | Zhao, W.; Eslami, H.; und Florian Müller-Plathe, W. L. C. Z. Phys. Chem. 2007, 221, 1647–1662. |
[65] | Youngs, T. G. A.; Hardacre, C. ChemPhysChem 2008, 9, 1548–1558. |
[66] | Bhargava, B. L.; Balasubramanian, S. J. Chem. Phys. 2007, 127, 114510. |
[67] | Morrow, T. I.; Maginn, E. J. J. Phys. Chem. B 2002, 106, 12807–12813. |
[68] | Liu, H.; Maginn, E. J. Chem. Phys. 2011, 135, 124507. |
[69] | Wang, J. M.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157–1174. |
[70] | Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269–10280. |
[71] | Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192–12193. |
[72] | Canongia Lopes, J.; Pádua, A. J. Phys. Chem. B 2006, 110, 3330–3335. |
[73] | Triolo, A.; Russina, O.; Bleif, H.-J.; Di Cola, E. J. Phys. Chem. B 2007, 111, 4641–4644. |
[74] | Xiao, D.; Rajian, J. R.; Cady, A.; Li, S.; Bartsch, R. A.; Quitevis, E. L. J. Phys. Chem. B 2007, 111, 4669–4677. |
[75] | VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. J. Comp. Phys. Comm. 2005, 167, 103–128. |
[76] | CP2K developers group, http://www.cp2k.org/. |
[77] | Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. J. Phys. Chem. B 2005, 109, 6103–6110. |
[78] | Nosé, S. J. Chem. Phys. 1984, 81, 511–519. |
[79] | Hoover, W. G. Phys. Rev. A 1985, 31, 1695–1697. |
[80] | Martyna, G. J.; Klein, M. L.; Tuckerman, M. J. Chem. Phys. 1992, 97, 2635–2643. |
[81] | Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100. |
[82] | Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789. |
[83] | Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799. |
[84] | VandeVondele, J.; Hutter, J. J. Chem. Phys. 2007, 127, 114105. |
[85] | Goedecker, S.; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54, 1703–1710. |
[86] | Hartwigsen, C.; Goedecker, S.; Hutter, J. Phys. Rev. B 1998, 58, 3641–3662. |
[87] | Krack, M. Theor. Chem. Acc. 2005, 114, 145–152. |
[88] | Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401. |
[89] | Kossmann, S.; Kirchner, B.; Neese, F. Mol. Phys. 2007, 105, 2049–2071. |
[90] | Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. |
[91] | Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257–2261. |
[92] | Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654–3665. |
[93] | Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41–51. |
[94] | Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. J. Chem. Phys. 1979, 71, 3396–3402. |
[95] | Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. |
[96] | Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327–341. |
[97] | Hockney, R. W.; Eastwood, J. W. Computer Simulation Using Particles; McGraw-Hill, 1981. |
[98] | Plimpton, S. J. Comp. Phys. 1995, 117, 1–19. |
[99] | Brehm, M.; Kirchner, B. J. Chem. Inf. Model. 2011, 51, 2007–2023. |
APA Style
Stefan Zahn, Richard Cybik. (2014). Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation. American Journal of Nano Research and Applications, 2(6-1), 19-26. https://doi.org/10.11648/j.nano.s.2014020601.13
ACS Style
Stefan Zahn; Richard Cybik. Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation. Am. J. Nano Res. Appl. 2014, 2(6-1), 19-26. doi: 10.11648/j.nano.s.2014020601.13
@article{10.11648/j.nano.s.2014020601.13, author = {Stefan Zahn and Richard Cybik}, title = {Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation}, journal = {American Journal of Nano Research and Applications}, volume = {2}, number = {6-1}, pages = {19-26}, doi = {10.11648/j.nano.s.2014020601.13}, url = {https://doi.org/10.11648/j.nano.s.2014020601.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nano.s.2014020601.13}, abstract = {The reliability of four force fields developed for 1-alkyl-3-methylimidazolium bis¬(tri¬fluoro¬methylsulfonyl)imide ionic liquids are compared to an ab inito molecular dynamics simulation regarding structural properties. Except the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion as well as the intramolecular potential surface of the anion in solution, structural properties are reproduced very well by all investigated force fields. Most recommended can be the force field developed by Canongia Lopes and Pádua because it reproduces best the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion.}, year = {2014} }
TY - JOUR T1 - Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation AU - Stefan Zahn AU - Richard Cybik Y1 - 2014/12/23 PY - 2014 N1 - https://doi.org/10.11648/j.nano.s.2014020601.13 DO - 10.11648/j.nano.s.2014020601.13 T2 - American Journal of Nano Research and Applications JF - American Journal of Nano Research and Applications JO - American Journal of Nano Research and Applications SP - 19 EP - 26 PB - Science Publishing Group SN - 2575-3738 UR - https://doi.org/10.11648/j.nano.s.2014020601.13 AB - The reliability of four force fields developed for 1-alkyl-3-methylimidazolium bis¬(tri¬fluoro¬methylsulfonyl)imide ionic liquids are compared to an ab inito molecular dynamics simulation regarding structural properties. Except the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion as well as the intramolecular potential surface of the anion in solution, structural properties are reproduced very well by all investigated force fields. Most recommended can be the force field developed by Canongia Lopes and Pádua because it reproduces best the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion. VL - 2 IS - 6-1 ER -