Electronic structure of ceramic BiFeO3O surface and Ba / BiFeO3 interface has been investigated in situ in an ultrahigh vacuum via synchrotron-based photoemission spectroscopy within the range of excited photon energy from 120 to 850 eV. The photo emission from the valence band and from Bi 4f, Fe 2p, and Ba 4d core-levels were studied. An effect of Ba atomic layer deposition is found to induce a significant change in all spectra that is originated from the strong interaction with charge transfer between Fe, Bi surface atoms and Ba adatoms. It is obtained that the Fe 2p 3/2 core-level spectrum for the clean BiFeO3 sample contains both the Fe2+ and Fe3+ ion components with atomic ratio of Fe2+ / Fe3+ ~ 1. The Ba adsorption is found to increase the Fe2+ / Fe3+ ratio up to ~ 1.5 that clearly exhibits recharge between Fe3+ ↔ Fe2+ ions and possibility to enhance the ferroelectric polarization.
Published in |
American Journal of Nano Research and Applications (Volume 5, Issue 3-1)
This article belongs to the Special Issue Nanotechnologies |
DOI | 10.11648/j.nano.s.2017050301.15 |
Page(s) | 18-21 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Electronic Structure, Surface, Ba / BiFeO3 Interface, Synchrotron-Photoemission Spectroscopy
[1] | L. W. Martin, S. P. Crane, Y.-H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C.-H. Yang, N. Balke, and R. Ramesh, J. Phys. Condens. Matter, vol. 20, no. 434220, 2008. |
[2] | P. Baettig, C. Ederer, and N. A. Spaldin, Phys. Rev. B, vol. 72, no. 214105, 2005. |
[3] | J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett., vol. 84, p. 5261, 2004. |
[4] | Y. P. Wang, G. L. Yuan, X. Y. Chen, J.-M. Liu, and Z. G. Liu, J. Phys. D, vol. 39, p. 2019, 2006. |
[5] | T. Higuchi, Y.-Sh. Liu, P. Yao, P.-A. Glans, J. Guo, Ch. Chang, Z. Wu, W. Sakamoto, N. Itoh, T. Shimura, and T. Yogo, Phys. Rev. B, vol. 78, no. 085106, 2008. |
[6] | F. Gao, C. Cai, Y. Wang, S. Dong, X. Y. Qiu, G. L. Yuan, and Z. G. Liu, J. Appl. Phys., vol. 99, no. 094105, 2006. |
[7] | S. Mandal, С. K. Ghosh, D. Sarkar, U. N. Maiti, and K. K. Chattopadhyay, Solid State Sci., vol. 12, p. 1803, 2010. |
[8] | A. T. Kozakov, A. G. Kochur, K. A. Googlev, A. V. Nikolsky, I. P. Raevski, V. S. Smotrakov, and V. V. Yeremkin, J. Electron Spectrosc. Rel. Phenom., vol. 184, p. 16, 2011. |
[9] | I. C. Infante, J. Juraszek, S. Fusil, B. Dupe, P. Gemeiner, O. Dieguez, F. Pailloux, S. Jouen, and E. Jacquet, Phys. Rev. Lett., vol.107, no. 237601, 2011. |
[10] | R. Schafranek, J. D. Baniecki, M. Ishii, Y. Kotaka, and K. Kurihara, New J. Phys., vol. 15, no. 053014, 2013. |
[11] | J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B, vol. 71, no. 014113, 2005. |
[12] | S. J. Clarkand J. Robertson, Appl. Phys. Lett., vol. 90, no. 132903, 2007. |
[13] | K. Liu, H. Fan, P. Ren, and Ch. Yang, J. Alloys Comp., vol. 509, p. 1901, 2011. |
[14] | Sh. Li, J. Morasch, A. Klein, Ch. Chirila, L. Pintilie, L. Jia, K. Ellmer, M. Naderer, K. Reichmann, M. Groting, and K. Albe, Phys. Rev. B, vol. 88, no. 045428, 2013. |
[15] | B. Ramachandran, A. Dixit, R. Naik, G. Lawes, and M. S. Ramachandra Rao, Phys. Rev. B, vol. 82, no. 012102, 2010. |
[16] | Z. V. Gareeva and A. K. Zvezdin, Phys. Status Solidi RRL, vol. 3, p. 79, 2009. |
[17] | B. Yu, M. Li, J. Wang, Zh. Hu, X. Liu, Y. Zhu, and X. Zhao, Thin Solid Films, vol. 520, p. 4089, 2012. |
[18] | G. V. Benemanskaya, M. N. Lapushkin, and S. N. Timoshnev, Surf. Sci., vol. 603, p. 2474, 2009. |
[19] | Y. Jeon, G. Liang, J. Chen, M. Croft, M. W. Ruckman, D. Di. Marzo, and M. S. Hegde, Phys. Rev.B, vol. 41, p. 4066, 1990. |
APA Style
G. Benemanskaya, P. Dementev, G. Iluridze, T. Minashvili, G. Frank–Kamenetskaya. (2017). Synchrotron-Radiation Photoemission Study of the Ba Atomic Layer Deposition on Multiferroic BiFeO3. American Journal of Nano Research and Applications, 5(3-1), 18-21. https://doi.org/10.11648/j.nano.s.2017050301.15
ACS Style
G. Benemanskaya; P. Dementev; G. Iluridze; T. Minashvili; G. Frank–Kamenetskaya. Synchrotron-Radiation Photoemission Study of the Ba Atomic Layer Deposition on Multiferroic BiFeO3. Am. J. Nano Res. Appl. 2017, 5(3-1), 18-21. doi: 10.11648/j.nano.s.2017050301.15
@article{10.11648/j.nano.s.2017050301.15, author = {G. Benemanskaya and P. Dementev and G. Iluridze and T. Minashvili and G. Frank–Kamenetskaya}, title = {Synchrotron-Radiation Photoemission Study of the Ba Atomic Layer Deposition on Multiferroic BiFeO3}, journal = {American Journal of Nano Research and Applications}, volume = {5}, number = {3-1}, pages = {18-21}, doi = {10.11648/j.nano.s.2017050301.15}, url = {https://doi.org/10.11648/j.nano.s.2017050301.15}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nano.s.2017050301.15}, abstract = {Electronic structure of ceramic BiFeO3O surface and Ba / BiFeO3 interface has been investigated in situ in an ultrahigh vacuum via synchrotron-based photoemission spectroscopy within the range of excited photon energy from 120 to 850 eV. The photo emission from the valence band and from Bi 4f, Fe 2p, and Ba 4d core-levels were studied. An effect of Ba atomic layer deposition is found to induce a significant change in all spectra that is originated from the strong interaction with charge transfer between Fe, Bi surface atoms and Ba adatoms. It is obtained that the Fe 2p 3/2 core-level spectrum for the clean BiFeO3 sample contains both the Fe2+ and Fe3+ ion components with atomic ratio of Fe2+ / Fe3+ ~ 1. The Ba adsorption is found to increase the Fe2+ / Fe3+ ratio up to ~ 1.5 that clearly exhibits recharge between Fe3+ ↔ Fe2+ ions and possibility to enhance the ferroelectric polarization.}, year = {2017} }
TY - JOUR T1 - Synchrotron-Radiation Photoemission Study of the Ba Atomic Layer Deposition on Multiferroic BiFeO3 AU - G. Benemanskaya AU - P. Dementev AU - G. Iluridze AU - T. Minashvili AU - G. Frank–Kamenetskaya Y1 - 2017/01/06 PY - 2017 N1 - https://doi.org/10.11648/j.nano.s.2017050301.15 DO - 10.11648/j.nano.s.2017050301.15 T2 - American Journal of Nano Research and Applications JF - American Journal of Nano Research and Applications JO - American Journal of Nano Research and Applications SP - 18 EP - 21 PB - Science Publishing Group SN - 2575-3738 UR - https://doi.org/10.11648/j.nano.s.2017050301.15 AB - Electronic structure of ceramic BiFeO3O surface and Ba / BiFeO3 interface has been investigated in situ in an ultrahigh vacuum via synchrotron-based photoemission spectroscopy within the range of excited photon energy from 120 to 850 eV. The photo emission from the valence band and from Bi 4f, Fe 2p, and Ba 4d core-levels were studied. An effect of Ba atomic layer deposition is found to induce a significant change in all spectra that is originated from the strong interaction with charge transfer between Fe, Bi surface atoms and Ba adatoms. It is obtained that the Fe 2p 3/2 core-level spectrum for the clean BiFeO3 sample contains both the Fe2+ and Fe3+ ion components with atomic ratio of Fe2+ / Fe3+ ~ 1. The Ba adsorption is found to increase the Fe2+ / Fe3+ ratio up to ~ 1.5 that clearly exhibits recharge between Fe3+ ↔ Fe2+ ions and possibility to enhance the ferroelectric polarization. VL - 5 IS - 3-1 ER -