| Peer-Reviewed

Synchrotron-Radiation Photoemission Study of the Ba Atomic Layer Deposition on Multiferroic BiFeO3

Received: 6 December 2016     Accepted: 7 December 2016     Published: 6 January 2017
Views:       Downloads:
Abstract

Electronic structure of ceramic BiFeO3O surface and Ba / BiFeO3 interface has been investigated in situ in an ultrahigh vacuum via synchrotron-based photoemission spectroscopy within the range of excited photon energy from 120 to 850 eV. The photo emission from the valence band and from Bi 4f, Fe 2p, and Ba 4d core-levels were studied. An effect of Ba atomic layer deposition is found to induce a significant change in all spectra that is originated from the strong interaction with charge transfer between Fe, Bi surface atoms and Ba adatoms. It is obtained that the Fe 2p 3/2 core-level spectrum for the clean BiFeO3 sample contains both the Fe2+ and Fe3+ ion components with atomic ratio of Fe2+ / Fe3+ ~ 1. The Ba adsorption is found to increase the Fe2+ / Fe3+ ratio up to ~ 1.5 that clearly exhibits recharge between Fe3+ ↔ Fe2+ ions and possibility to enhance the ferroelectric polarization.

Published in American Journal of Nano Research and Applications (Volume 5, Issue 3-1)

This article belongs to the Special Issue Nanotechnologies

DOI 10.11648/j.nano.s.2017050301.15
Page(s) 18-21
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Electronic Structure, Surface, Ba / BiFeO3 Interface, Synchrotron-Photoemission Spectroscopy

References
[1] L. W. Martin, S. P. Crane, Y.-H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C.-H. Yang, N. Balke, and R. Ramesh, J. Phys. Condens. Matter, vol. 20, no. 434220, 2008.
[2] P. Baettig, C. Ederer, and N. A. Spaldin, Phys. Rev. B, vol. 72, no. 214105, 2005.
[3] J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett., vol. 84, p. 5261, 2004.
[4] Y. P. Wang, G. L. Yuan, X. Y. Chen, J.-M. Liu, and Z. G. Liu, J. Phys. D, vol. 39, p. 2019, 2006.
[5] T. Higuchi, Y.-Sh. Liu, P. Yao, P.-A. Glans, J. Guo, Ch. Chang, Z. Wu, W. Sakamoto, N. Itoh, T. Shimura, and T. Yogo, Phys. Rev. B, vol. 78, no. 085106, 2008.
[6] F. Gao, C. Cai, Y. Wang, S. Dong, X. Y. Qiu, G. L. Yuan, and Z. G. Liu, J. Appl. Phys., vol. 99, no. 094105, 2006.
[7] S. Mandal, С. K. Ghosh, D. Sarkar, U. N. Maiti, and K. K. Chattopadhyay, Solid State Sci., vol. 12, p. 1803, 2010.
[8] A. T. Kozakov, A. G. Kochur, K. A. Googlev, A. V. Nikolsky, I. P. Raevski, V. S. Smotrakov, and V. V. Yeremkin, J. Electron Spectrosc. Rel. Phenom., vol. 184, p. 16, 2011.
[9] I. C. Infante, J. Juraszek, S. Fusil, B. Dupe, P. Gemeiner, O. Dieguez, F. Pailloux, S. Jouen, and E. Jacquet, Phys. Rev. Lett., vol.107, no. 237601, 2011.
[10] R. Schafranek, J. D. Baniecki, M. Ishii, Y. Kotaka, and K. Kurihara, New J. Phys., vol. 15, no. 053014, 2013.
[11] J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B, vol. 71, no. 014113, 2005.
[12] S. J. Clarkand J. Robertson, Appl. Phys. Lett., vol. 90, no. 132903, 2007.
[13] K. Liu, H. Fan, P. Ren, and Ch. Yang, J. Alloys Comp., vol. 509, p. 1901, 2011.
[14] Sh. Li, J. Morasch, A. Klein, Ch. Chirila, L. Pintilie, L. Jia, K. Ellmer, M. Naderer, K. Reichmann, M. Groting, and K. Albe, Phys. Rev. B, vol. 88, no. 045428, 2013.
[15] B. Ramachandran, A. Dixit, R. Naik, G. Lawes, and M. S. Ramachandra Rao, Phys. Rev. B, vol. 82, no. 012102, 2010.
[16] Z. V. Gareeva and A. K. Zvezdin, Phys. Status Solidi RRL, vol. 3, p. 79, 2009.
[17] B. Yu, M. Li, J. Wang, Zh. Hu, X. Liu, Y. Zhu, and X. Zhao, Thin Solid Films, vol. 520, p. 4089, 2012.
[18] G. V. Benemanskaya, M. N. Lapushkin, and S. N. Timoshnev, Surf. Sci., vol. 603, p. 2474, 2009.
[19] Y. Jeon, G. Liang, J. Chen, M. Croft, M. W. Ruckman, D. Di. Marzo, and M. S. Hegde, Phys. Rev.B, vol. 41, p. 4066, 1990.
Cite This Article
  • APA Style

    G. Benemanskaya, P. Dementev, G. Iluridze, T. Minashvili, G. Frank–Kamenetskaya. (2017). Synchrotron-Radiation Photoemission Study of the Ba Atomic Layer Deposition on Multiferroic BiFeO3. American Journal of Nano Research and Applications, 5(3-1), 18-21. https://doi.org/10.11648/j.nano.s.2017050301.15

    Copy | Download

    ACS Style

    G. Benemanskaya; P. Dementev; G. Iluridze; T. Minashvili; G. Frank–Kamenetskaya. Synchrotron-Radiation Photoemission Study of the Ba Atomic Layer Deposition on Multiferroic BiFeO3. Am. J. Nano Res. Appl. 2017, 5(3-1), 18-21. doi: 10.11648/j.nano.s.2017050301.15

    Copy | Download

    AMA Style

    G. Benemanskaya, P. Dementev, G. Iluridze, T. Minashvili, G. Frank–Kamenetskaya. Synchrotron-Radiation Photoemission Study of the Ba Atomic Layer Deposition on Multiferroic BiFeO3. Am J Nano Res Appl. 2017;5(3-1):18-21. doi: 10.11648/j.nano.s.2017050301.15

    Copy | Download

  • @article{10.11648/j.nano.s.2017050301.15,
      author = {G. Benemanskaya and P. Dementev and G. Iluridze and T. Minashvili and G. Frank–Kamenetskaya},
      title = {Synchrotron-Radiation Photoemission Study of the Ba Atomic Layer Deposition on Multiferroic BiFeO3},
      journal = {American Journal of Nano Research and Applications},
      volume = {5},
      number = {3-1},
      pages = {18-21},
      doi = {10.11648/j.nano.s.2017050301.15},
      url = {https://doi.org/10.11648/j.nano.s.2017050301.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nano.s.2017050301.15},
      abstract = {Electronic structure of ceramic BiFeO3O surface and Ba / BiFeO3 interface has been investigated in situ in an ultrahigh vacuum via synchrotron-based photoemission spectroscopy within the range of excited photon energy from 120 to 850 eV. The photo emission from the valence band and from Bi 4f,  Fe 2p, and Ba 4d core-levels were studied. An effect of Ba atomic layer deposition is found to induce a significant change in all spectra that is originated from the strong interaction with charge transfer between Fe, Bi surface atoms and Ba adatoms. It is obtained that the Fe 2p 3/2 core-level spectrum for the clean BiFeO3 sample contains both the Fe2+ and Fe3+ ion components with atomic ratio of Fe2+ / Fe3+ ~ 1. The Ba adsorption is found to increase the Fe2+ / Fe3+ ratio up to ~ 1.5 that clearly exhibits recharge between Fe3+ ↔ Fe2+ ions and possibility to enhance the ferroelectric polarization.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Synchrotron-Radiation Photoemission Study of the Ba Atomic Layer Deposition on Multiferroic BiFeO3
    AU  - G. Benemanskaya
    AU  - P. Dementev
    AU  - G. Iluridze
    AU  - T. Minashvili
    AU  - G. Frank–Kamenetskaya
    Y1  - 2017/01/06
    PY  - 2017
    N1  - https://doi.org/10.11648/j.nano.s.2017050301.15
    DO  - 10.11648/j.nano.s.2017050301.15
    T2  - American Journal of Nano Research and Applications
    JF  - American Journal of Nano Research and Applications
    JO  - American Journal of Nano Research and Applications
    SP  - 18
    EP  - 21
    PB  - Science Publishing Group
    SN  - 2575-3738
    UR  - https://doi.org/10.11648/j.nano.s.2017050301.15
    AB  - Electronic structure of ceramic BiFeO3O surface and Ba / BiFeO3 interface has been investigated in situ in an ultrahigh vacuum via synchrotron-based photoemission spectroscopy within the range of excited photon energy from 120 to 850 eV. The photo emission from the valence band and from Bi 4f,  Fe 2p, and Ba 4d core-levels were studied. An effect of Ba atomic layer deposition is found to induce a significant change in all spectra that is originated from the strong interaction with charge transfer between Fe, Bi surface atoms and Ba adatoms. It is obtained that the Fe 2p 3/2 core-level spectrum for the clean BiFeO3 sample contains both the Fe2+ and Fe3+ ion components with atomic ratio of Fe2+ / Fe3+ ~ 1. The Ba adsorption is found to increase the Fe2+ / Fe3+ ratio up to ~ 1.5 that clearly exhibits recharge between Fe3+ ↔ Fe2+ ions and possibility to enhance the ferroelectric polarization.
    VL  - 5
    IS  - 3-1
    ER  - 

    Copy | Download

Author Information
  • Department of Solid State Physics, Ioffe Institute, St. Petersburg, Russia

  • Department of Solid State Physics, Ioffe Institute, St. Petersburg, Russia

  • Department of Engineering Physics, Georgian Technical University, Tbilisi, Georgia

  • Department of Engineering Physics, Georgian Technical University, Tbilisi, Georgia

  • Department of Analytical Chemistry, St. Petersburg State Technological Institute, St. Petersburg, Russia

  • Sections